NBS-LRR Resistance Genes Variability in Durum Wheat Cultivars Inferred from NBS-Profiling
- Autores: Trifonova A.A.1, Dedova L.V.1, Boris K.V.1, Malchikov P.N.2, Kudryavtsev A.M.1
-
Afiliações:
- Vavilov Institute of General Genetics Russian Academy of Sciences
- Samara Scientific Research Agriculture Institute named after N.M. Tulajkov – Samara Federal Research Scientific Center of the RAS
- Edição: Volume 61, Nº 8 (2025)
- Páginas: 38-47
- Seção: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://j-morphology.com/0016-6758/article/view/693812
- DOI: https://doi.org/10.31857/S0016675825080041
- ID: 693812
Citar
Texto integral



Resumo
One of the most important trends in the development of new durum wheat cultivars is resistance to diseases and pests, causing significant yield losses. The most common class of plant resistance genes is NBS-LRR genes; for the analysis of variability of these genes the NBS-profiling method is effectively used. In the present work, this method was used for the first time to study domestic durum wheat cultivars and to compare them with foreign cultivars. The detected NBS-LRR resistance genes polymorphism was rather high (64.04%): 62.12% for 54 Russian cultivars and 36.33% for 21 foreign cultivars. Unique NBS-fragments were identified in four spring and three winter cultivars. NBS-profiling data analysis revealed differentiation of Russian and foreign durum wheat cultivars, both spring and winter, which indicates differences in their sets of resistance genes. At the same time, no division by pedigrees and breeding centers was revealed among Russian cultivars.
Palavras-chave
Sobre autores
A. Trifonova
Vavilov Institute of General Genetics Russian Academy of Sciences
Autor responsável pela correspondência
Email: aichka89@mail.ru
Moscow, 119991 Russia
L. Dedova
Vavilov Institute of General Genetics Russian Academy of Sciences
Email: aichka89@mail.ru
Moscow, 119991 Russia
K. Boris
Vavilov Institute of General Genetics Russian Academy of Sciences
Email: aichka89@mail.ru
Moscow, 119991 Russia
P. Malchikov
Samara Scientific Research Agriculture Institute named after N.M. Tulajkov – Samara Federal Research Scientific Center of the RAS
Email: aichka89@mail.ru
Samara region, Bezenchuk, 446254 Russia
A. Kudryavtsev
Vavilov Institute of General Genetics Russian Academy of Sciences
Email: aichka89@mail.ru
Moscow, 119991 Russia
Bibliografia
- De Vita P., Taranto F. Durum wheat (Triticum turgidum ssp. durum) breeding to meet the challenge of climate change // Advances in Plant Breeding Strategies: Cereals. V. 5. Cham: Springer, 2019. P. 471–524.
- Natoli V., Malchikov P., De Vita P. et al. Genetic improvement for gluten strength in Russian spring durum wheat genotypes // Comprehensible Science: ICCS 2020. V. 186. Cham: Springer, 2021. P. 301–312. https://doi.org/10.1007/978-3-030-66093-2_29
- Chai Y., Pardey P.G., Hurley T.M. et al. A probabilistic bio-economic assessment of the global consequences of wheat leaf rust // Phytopathology. 2020. V. 110. P. 1886–1896. https://doi.org/10.1094/PHYTO-02-20-0032-R
- Maccaferri M., Harris N.S., Twardziok S.O. et al. Durum wheat genome highlights past domestication signatures and future improvement targets // Nat. Genetics. 2019. V. 51. № 5. P. 885–895. https://doi.org/10.1038/s41588-019-0381-3
- Zou S., Xu Y., Li Q. et al. Wheat powdery mildew resistance: from gene identification to immunity deployment // Front. in Plant Science. 2023. V. 14. https://doi.org/10.3389/fpls.2023.1269498
- Van der Linden C.G., Wouters D.C., Mihalka V. et al. Efficient targeting of plant disease resistance loci using NBS profiling // Theor. and Applied Genetics. 2004. V. 109. № 2. P. 384–393. https://doi.org/10.1007/s00122-004-1642-8
- Mantovani P., Van der Linden G., Maccaferri M. et al. Nucleotide-binding site (NBS) profiling of genetic diversity in durum wheat // Genome. 2006. V. 49. № 11. P. 1473–1480. https://doi.org/10.1139/g06-100
- Gennaro A., Koebner R.M., Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat // Functional & Integrative Genomics. 2009. V. 9. P. 325–334. https://doi.org/10.1007/s10142-009-0115-1
- Tufan H.A., Göcmen Taskin B., Maccormack R. et al. The utility of NBS-profiling for characterization of yellow rust resistance in an F6 durum wheat population // J. Genetics. 2019. V. 98. P. 1–12. https://doi.org/10.1007/s12041-019-1143-9
- Sanz M.J., Loarce Y., Fominaya A. et al. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats // Theor. and Applied Genetics. 2013. V. 126. P. 203–218. https://doi.org/10.1007/s00122-012-1974-8
- Brugmans B., Wouters D., van Os H. et al. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling // Theor. and Applied Genetics. 2008. V. 117. № 8. P. 1379–1388. https://doi.org/10.1007/s00122-008-0871-7.
- Дьяченко Е.А., Кулакова А.В., Кочиева Е.З. и др. Вариабельность геномных RGA-локусов современных отечественных сортов картофеля: данные NBS-маркирования // С.-хоз. биология. 2021. Т. 56. № 1. С. 32–43. https://doi.org/10.15389/agrobiology.2021.1.32rus
- Трифонова А.А., Шлявас А.В., Дедова Л.В. и др. Генетическое разнообразие сортов яблони народной селекции (Malus × domestica Borkh.) Поволжья из коллекции ВИР по данным NBS-профайлинга // Генетика. 2021. Т. 57. № 6. С. 661–673. https://doi.org/10.31857/S0016675821060114
- Трифонова А.А., Парадня Е.Р., Борис К.В., Кудрявцев А.М. Полиморфизм NBS-LRR генов устойчивости гибридов сахарной свеклы по данным NBS-профайлинга // Генетика. 2022. Т. 58. № 2. С. 239–244. https://doi.org/10.31857/S0016675822010118
- Benbouza H., Jacquemin J.M., Baudoin J.P., Mergeai G. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels // BASE. 2006. V. 10. № 2. P. 77–81.
- Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update // Bioinformatics. 2012. V. 28. P. 2537–2539.
- Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics software package for education and data analysis // Paleontologia Electronica. 2001. V. 4. № 1. P. 1–9.
- Tamura K., Stecher G., Kumar S. MEGA 11: Molecular Evolutionary Genetics Analysis version 11 // Mol. Biology and Evolution. 2021. V. 38. № 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
- Sayar-Turet M., Dreisigacker S., Braun H.J. et al. Genetic variation within and between winter wheat geno- types from Turkey, Kazakhstan, and Europe as determined by nucleotide-binding-site profiling // Genome. 2011. V. 54. № 5. P. 419–430. https://doi.org/10.1139/g11-008
- Figliuolo G., Mazzeo M., Greco I. Temporal variation of diversity in Italian durum wheat germplasm // Genet. Res. and Crop Evolution. 2007. V. 54. P. 615–626. https://doi.org/10.1007/s10722-006-0019-z
- Moragues M., Moralejo M., Sorrells M.E., Royo C. Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites // Genet. Res. and Crop Evolution. 2007. V. 54. P. 1133–1144. https://doi.org/10.1007/s10722-006-9005-8
- Marzario S., Logozzo G., David J.L. et al. Molecular genotyping (SSR) and agronomic phenotyping for utilization of durum wheat (Triticum durum Desf.) ex situ collection from Southern Italy: A combined approach including pedigreed varieties // Genes. 2018. V. 9. № 10. P. 465. https://doi.org/10.3390/genes9100465
- Robbana C., Kehel Z., Ben Naceur M.B. et al. Genome-wide genetic diversity and population structure of Tunisian durum wheat landraces based on DArTseq technology // Intern. J. Mol. Sciences. 2019. V. 20. № 6. P. 1352. https://doi.org/10.3390/ijms20061352
- Mazzucotelli E., Sciara G., Mastrangelo A.M. et al. The global durum wheat panel (GDP): An international platform to identify and exchange beneficial alleles // Frontiers in Plant Science. 2020. V. 11. https://doi.org/10.3389/fpls.2020.569905
- Кудрявцев А.М., Дедова Л.В., Мельник В.А. и др. Генетическое разнообразие современных российских сортов яровой и озимой твердой пшеницы по глиадинкодирующим локусам // Генетика. 2014. Т. 50. № 5. С. 554–559. https://doi.org/10.7868/S0016675814050099
- Щипак Г.В., Недоступов Р.А., Щипак В.Г. Селекция озимой твердой пшеницы на повышение адаптивного потенциала и урожайность // Вавил. журн. генетики и селекции. 2012. Т. 16. № 2. С. 455–463.
- Юсов В.С. Создание и селекционно-генетическая оценка исходного материала яровой твердой пшеницы для селекции в условиях Западной Сибири: Дис. докт. с.-хоз. наук. Красноярск: Красноярский гос. аграрный ун-т, 2024. 439 с.
- Melnikova N.V., Ganeva G.D., Popova Z.G. et al. Gliadins of Bulgarian durum wheat (Triticum durum Desf.) landraces: Genetic diversity and geographical distribution // Genet. Res. and Crop Evolution. 2010. V. 57. P. 587–595. https://doi.org/10.1007/s10722-009-9497-0
- Haugrud P., Achilli A.R., Martínez-Peña R., Klymiuk V. Future of durum wheat research and breeding: Insights from early career researchers // The Plant Genome. 2024. P. e20453. https://doi.org/10.1002/tpg2.20453
- Мальчиков П.Н., Мясникова М.Г. Развитие селекции яровой твердой пшеницы в России (странах бывшего СССР), результаты и перспективы // Вавил. журн. генетики и селекции. 2023. Т. 27. № 6. С. 591–608. https://doi.org/10.18699/VJGB-23-71
- Мальчиков П.Н., Мясникова М.Г., Леонова И.Н., Салина Е.А. Итрогрессия устойчивости к мучнистой росе (Blumeria graminis DC. f. tritici) от Triticum timopheevii Zhuk. и Triticum dicoccum Shuebl. в геном Triticum durum Desf. // Зерновое хозяйство России. 2015. № 2. С. 63–67.
Arquivos suplementares
