Generation mechanisms of zebra structures in solar radio emission on the background of complex dynamic spectra

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The discussion about the origin of the zebra structure has been going on for more than 50 years. In many papers it is usually postulated that the double plasma resonance mechanism always works if there are fast particles in the magnetic trap. Due to a number of difficulties encountered by this mechanism, works on its improvement began to appear, mainly in a dozen papers by Karlitsky and Yasnov, where the whole discussion is based on the variability of the ratio of the magnetic field and density height scales and the assumption of some plasma turbulence in the source. Here we show the possibilities of an alternative model of interaction of plasma waves with whistlers. Several phenomena were selected in which it is clear that the ratio of height scales does not change in the magnetic loop as the source of the zebra structure. It was shown that all the main details of the sporadic zebra structure in the phenomenon of 1 August 2010 (and in many other phenomena) can be explained within the framework of a unified model of zebra structure and radio fibers (fiber bursts) in the interaction of plasma waves with whistlers. The main changes in the zebra structure bands are caused by the scattering of fast particles on whistlers, leading to switching of the whistler instability from the normal Doppler effect to the anomalous one. In the end, the possibilities of laboratory experiments are considered and the solar zebra structure is compared with similar bands in the decametre radio emission of Jupiter.

作者简介

G. Chernov

N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS (IZMIRAN)

编辑信件的主要联系方式.
Email: gchernov@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

V. Fomichev

N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS (IZMIRAN)

Email: fomichev@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Benáček J., Karlicky M., Yasnov L.V. Temperature dependent growth rates of the upper-hybrid waves and solar radio zebra patterns // Astron. Astrophys. V. 598. ID A108. 2017. https://doi.org/10.1051/0004-6361/201629395
  2. Chernov G.P. Microstructure in the continuous radiation of type IV meter bursts. Modulation of continuous emission by wave packets of whistlers // Sov. Astron. V. 20. № 5. P. 582‒589. 1976.
  3. Chernov G.P. Whistlers in the solar corona and their relevance to fine structures of type IV radio emission // Sol. Phys. V. 130. № 1‒2. P. 75‒82. 1990. https://doi.org/10.1007/BF00156780
  4. Chernov G.P. A manifestation of quasilinear diffusion in whistlers in the fine structure of type IV solar radio bursts // Astron. Rep. V. 40. № 4. P. 561–568. 1996.
  5. Chernov G.P. The relationship between fine structure of the solar radio emission at meter wavelengths and coronal transients // Astron. Lett. V. 23. № 6. P. 827–837. 1997.
  6. Chernov G.P. Solar radio burst with drifting stripes in emission and absorption // Space Sci. Rev. V. 127. № 1–4. P. 195–326. 2006. https://doi.org/10.10007/s11214-006-9141-7
  7. Chernov G.P., Stanislavsky A.A., Konovalenko A.A., Abranin E.P., Dorovsky V.V., Rucker H.O. Fine structure of decametric type II radio bursts // Astron. Lett. V. 33. № 3. P. 192–202. 2007. https://doi.org/10.1134/S1063773707030061
  8. Chernov G.P. Manifestation of quasilinear diffusion on whistlers in the fine structure radio sources of solar radio bursts // Plasma Phys. Rep. V. 31. № 4. P. 314‒324. 2005. https://doi.org/10.1134/1.1904148
  9. Chernov G.P. Unusual stripes in emission and absorption in solar radio bursts: Ropes of fibers in the meter wave band // Astron. Lett. V. 34. № 7. P. 486–499. 2008. https://doi.org/10.1134/S1063773708070074
  10. Chernov G.P. Fine structure of solar radio bursts. Heidelberg: Springer, 282 p. 2011. https://doi.org/10.10007/978-3-642-20015-1
  11. Chernov G.P. Latest data on the fine structure in solar radio emission / LAMBERT Academic Publisher. Riga, Latvia, 284 p. 2019.
  12. Chernov G.P., Fomichev V.V., Sych R.A. A model of zebra patterns in solar radio emission // Geomagn. Aeronomy. V. 58. № 3. P. 394–406. 2018. https://doi.org/10.1134/S0016793218030040
  13. Elgarøy Ø. Observations of the fine structure of enhanced solar radio radiation with a narrow-band spectrum analyser // Nature. V. 184. № 4690. P. 887–888. 1959. https://doi.org/10.1038/184887a0
  14. Fomichev V.V., Fainstein S.M., Chernov G.P. A possible interpretation of the zebra pattern in solar radiation // Plasma Phys. Rep. V. 35. № 12. P. 1032–1035. 2009. https://doi.org/10.1134/S1063780X09120058
  15. Karlický M., Bárta M., Jiřička K., Meszárosová H., Sawant H.S., Fernandes F.C.R., Cecatto J.R. Radio bursts with rapid frequency variations – lace bursts // Astron. Astrophys. V. 375. № 2. P. 638–642. 2001. https://doi.org/10.1051/0004-6361:20010888
  16. Karlický M. Radio continua modulated by waves: Zebra patterns in solar and pulsar radio spectra // Astron. Astrophys. V. 552. ID A90. 2013. https://doi.org/10.1051/0004-6361/201321356
  17. Karlický M. Frequency variations of solar radio zebras and their power-law spectra // Astron. Astrophys. V. 561. ID A 34. 2014. https://doi.org/10.1051/00046361/201322547
  18. Karlický M. Simulations of the solar radio zebra // Astron. Astrophys. V. 661. ID A56. 2022. https://doi.org/10.1051/0004-6361/202142497
  19. Kuijpers J. Collective wave-particle interactions in solar type IV radio sources. Ph.D. Thesis. Utrecht, The Netherlands: Utrecht University. 72 p. 1975.
  20. Kuijpers J. Theory of type IV dm Bursts // Symposium - International Astronomical Union. V. 86. P. 341–361. 1980. https://doi.org/10.1017/S0074180900037098
  21. Kuznetsov A.A., Tsap Yu.T. Loss-cone instability and formation of zebra patterns in type IV solar radio bursts // Sol. Phys. V. 241. P. 127–148. 2007. https://doi.org/10.1007/S11207-006-0351-7
  22. LaBelle J., Treumann R.A., Yoon P.H., Karlický M. A model of zebra emission in solar type IV radio bursts // Astrophys. J. V. 593. № 2. P. 1195–11207. 2003. https://doi.org/10.1086/376732.
  23. Laptuhov A.I., Chernov G.P. New mechanism for the formation of discrete stripes in the solar radio spectrum // Plasma Phys. Rep. V. 32. № 10. P. 866–871. 2006. https://doi.org/10.1134/S1063780X06100060
  24. Laptuhov A.I., Chernov G.P. Concerning mechanisms for the zebra pattern formation in the solar radio emission // Plasma Phys. Rep. V. 35. № 2. P. 160–168. 2009. https://doi.org/10.1134/S1063780X09020081
  25. Litvinenko G.V., Shaposhnikov V.E., Konovalenko A.A., Zakharenko V.V., Panchenko M., Dorovsky V.V., Brazhenko A.I., Rucker H.O., Vinogradov V.V., Melnik V.N. Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra // Icarus. V. 272. P. 80–87. 2016. https://doi.org/10.1016/j.icarus.2016.02.039
  26. Mollwo L. Interpretation of patterns of drifting zebra stripes // Sol. Phys. V. 83. № 2. P. 305–320. 1983. https://doi.org/10.1007/BF00157482
  27. Mollwo L. The magneto-hydrostatic field in the region of Zebra patterns in solar type-IV dm-bursts // Sol. Phys. V. 116. № 2. P. 323–348. 1988. https://doi.org/10.1007/BF00157482
  28. Panchenko M., Rošker S., Rucker H.O. et al. Zebra pattern in decametric radio emission of Jupiter // Astron. Astrophys. V. 610. ID A69. 2018. https://doi.org/10.1051/0004-6361/201731369
  29. Selhorst C.L., Silva-Válio A., Costa J.E.R. Solar atmospheric model over a highly polarized 17 GHz active region // Astron. Astrophys. V. 488. № 3. P. 1079–1084. 2008. https://doi.org/10.1051/0004-6361:20079217
  30. Slottje C. Peculiar absorption and emission microstructures in the type IV solar radio outburst of March 2, 1970 // Sol. Phys. V. 25. № 1. P. 210–231. 1972. https://doi.org/10.1007/BF00155758
  31. Slottje C. Atlas of fine structures of dynamics spectra of solar type IV-dm and some type II radio bursts. Utrecht, The Netherlands: Dwingeloo Observatory, 233 p. 1981.
  32. Treumann R.A., Gudel M., Benz A.O. Alfven wave solitons and solar intermediate drift bursts // Astron. Astrophys. V. 236. № 1. P. 242–249. 1990.
  33. Viktorov M., Mansfeld D., Golubev S. Laboratory study of kinetic instabilities in a nonequilibrium mirror-confined plasma // Europhys. Lett. V. 109. № 6. ID 65002. 2015. https://doi.org/10.1209/0295-5075/109/65002
  34. Winglee R.M. and Dulk G.A. The electron-cyclotron maser instability as a source of plasma emission // Astrophys. J. V. 307. P. 808–819. 1986. https://doi.org/10.1086/164467
  35. Yasnov L.V., Chernov G.P. Alternative models of zebra patterns in the event on June 21, 2011 // Sol. Phys. V. 295. № 2. ID 13. 2020. https://doi.org/10.1007/s11207-020-1585-5
  36. Yasnov L.V., Karlický M., Stupishin A.G. Physical conditions in the source region of a zebra structure // Sol. Phys. V. 291. № 7. P. 2037–2047. 2016. https://doi.org/10.1007/s11207-016-0952-8
  37. Yasnov L.V., Karlický M. Magnetic field, electron density and their spatial scales in zebra pattern radio sources // Sol. Phys. V. 295. № 7. ID 96. 2020. https://doi.org/10.1007/s11207-020-01652-w
  38. Zheleznyakov V.V., Zlotnik E.Ya. Cyclotron wave instability in the corona and origin of solar radio emission with fine structure // Sol. Phys. V. 43. № 2. P. 431–451. 1975a. https://doi.org/10.1007/BF00152366
  39. Zheleznyakov V.V., Zlotnik E.Ya. Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. III. Origin of zebra pattern // Sol. Phys. V. 44. № 2. P. 461–470. 1975b. https://doi.org/10.1007/BF00153225
  40. Zheleznyakov V.V., Zlotnik E.Ya., Zaitsev V.V., Shaposhnikov V.E. Double plasma resonance and its manifestations in radio astronomy // Phys.-Usp. V. 59. № 10. P. 997–1120. 2016. https://doi.org/10.3367/UFNe.2016.05.037813
  41. Zlotnik E.Ya., Zaitsev V.V., Aurass H., Mann G., Hofmann A. Solar type IV burst spectral fine structures. II. Source model // Astron. Astrophys. V. 410. № 3. P. 1011–1022. 2003. https://doi.org/10.1051/0004-6361:20031250
  42. Zlonik E.Ya., Zaitsev V.V., Aurass H., Mann G.A. Special radio spectral fine structure used for plasma diagnostics in coronal magnetic traps // Sol. Phys. V. 255. № 2. P. 273–288. 2009. https://doi.org/10.1007/s11207-009-9327-8
  43. Zlotnik E.Y., Shaposhnikov V.E., Zaitsev V.V. Interpretation of the zebra pattern in the Jovian kilometric radiation // J. Geophys. Res. – Space. V. 121. № 6. P. 5307–5318. 2016. https://doi.org/10.1002/2016JA022655

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025