Statistical studies of the relationship between the amplitude of positive magnetic bays at mid latitudes, geomagnetic activity and solar wind parameters
- 作者: Lubchich A.A.1, Despirak I.V.1, Werner R.2
-
隶属关系:
- Polar Geophysical Institute
- Space Research and Technology Institute, Bulgarian Academy of Sciences
- 期: 卷 65, 编号 1 (2025)
- 页面: 62-74
- 栏目: Articles
- URL: https://j-morphology.com/0016-7940/article/view/684618
- DOI: https://doi.org/10.31857/S0016794025010069
- EDN: https://elibrary.ru/AEFWUR
- ID: 684618
如何引用文章
详细
During the expansion phase of the substorm, the poleward jump of the aurora (breakup) and the expansion of the auroral bulge are observed. The expansion is accompanied by a negative magnetic bay under the aurora and a positive magnetic bay at the middle latitudes. The amplitude of the negative bay is characterized by the auroral AL-index. To characterize the positive bay, the MPB-index (Mid-latitude Positive Bay index) was previously proposed. The paper examines the statistical relationship of the MPB-index with the geomagnetic activity at different latitudes and with the parameters of the solar wind and the interplanetary magnetic field. It is shown that all extremely large values of the MPB-index (above 10.000 nT2) are observed during strong geomagnetic storms (when the Dst-index drops below –100 nT), and all extremely strong geomagnetic storms (when the Dst-index drops below –250 nT) accompanied by extremely high MPB-index values. Statistically, the MPB-index increases with the increasing of geomagnetic activity at any latitudes. The MPB-index, on average, increases with the increasing of the magnitude of the interplanetary magnetic field and any of its components. But for the Bz-component, large values of the MPB-index are observed by its southward direction. For plasma parameters of the solar wind, the MPB-index increases most strongly with the increasing of the solar wind speed. There is also the strong dependence on the dynamic pressure and on the magnitude of the EY-component of the solar wind electric field. However, the MPB-index weakly depends on solar wind density and temperature.
作者简介
A. Lubchich
Polar Geophysical Institute
编辑信件的主要联系方式.
Email: lubchich@pgia.ru
俄罗斯联邦, Apatity
I. Despirak
Polar Geophysical Institute
Email: despirak@gmail.com
俄罗斯联邦, Apatity
R. Werner
Space Research and Technology Institute, Bulgarian Academy of Sciences
Email: rolwer52@yahoo.co.uk
保加利亚, Stara Zagora
参考
- Вернер Р., Гинева В., Дэспирак И.В., Любчич А.А., Сецко П.В., Атанасов А., Божилова Р., Райкова Л., Валев Д. Статистические исследования авроральной активности и возмущений геомагнитного поля на средних широтах // Геомагнетизм и аэрономия. T. 63. № 4. С. 520–533. 2023. https://doi.org/10.31857/S0016794022600727
- Werner R., Guineva V., Despirak I.V., Lubchich A.A., Setsko P.V., Atanassov A., Bojilova R., Raykova L., Valev D. Statistical Studies of Auroral Activity and Perturbations of the Geomagnetic Field at Middle Latitudes // Geomagnetism and Aeronomy. V. 63. № 4. P. 473–485. 2023. https://doi.org/10.1134/S0016793223600303
- Дремухина Л.А., Ермолаев Ю.И., Лодкина И.Г. Различия в динамике асимметричной части магнитного возмущения в периоды магнитных бурь, индуцированных разными межпланетными источниками // Геомагнетизм и аэрономия. Т. 60. № 6. С. 727–739. 2020. https://doi.org/10.31857/S0016794020060036
- Dremukhina L.A., Yermolaev Y.I., Lodkina I.G. Differences in the dynamics of the asymmetrical part of the magnetic disturbance during the periods of magnetic storms induced by different interplanetary sources // Geomagnetism and Aeronomy. V. 60. № 6. P. 714–726. 2020. https://doi.org/10.1134/S0016793220060031
- Дэспирак И.В., Клейменова Н.Г., Любчич А.А., Сецко П.В., Громова Л.И., Вернер Р. Глобальное развитие суперсуббури 28 мая 2011 года // Геомагнетизм и аэрономия. Т. 62. № 3. С. 325–335. 2022. doi: 10.31857/S0016794022030063
- Despirak I.V., Kleimenova N.G., Lyubchich A.A., Setsko P.V., Gromova L.I., Werner R. Global Development of the Supersubstorm of May 28, 2011 // Geomagnetism and Aeronomy. V. 62. № 3. P. 199–208. 2022. https://doi.org/10.1134/S0016793222030069
- Любчич А.А., Дэспирак И.В., Вернер Р. Зависимость MPB-индекса от геомагнитной активности и характеристик солнечного ветра // Proc. XLVI Annual Seminar. Apatity. P. 42–47. 2023. https://doi.org/10.51981/2588-0039.2023.46.009
- Любчич А.А., Дэспирак И.В., Яхнин А.Г. Связь давления и скорости солнечного ветра в минимуме одиннадцатилетнего цикла // Геомагнетизм и аэрономия. Т. 44. № 2. C. 143–148. 2004.
- Lyubchich A.A., Despirak I.V., Yakhnin A.G. Correlation between the solar wind pressure and velocity at a minimum of the 11-year cycle // Geomagnetism and Aeronomy. V. 44. № 2. P. 143–148. 2004.
- Старков Г.В. Планетарная динамика аврорального свечения / Физика околоземного космического пространства. Глава 3, 4. С. 409–499. Апатиты: изд. КНЦ РАН, 706 с. 2000.
- Трошичев О.А. PC-индекс – наземный индикатор поступающей в магнитосферу энергии солнечного ветра // Проблемы Арктики и Антарктики. № 2 (85). С. 102–116. 2010.
- Arnold B.C. Pareto Distribution / In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels). 2015. https://doi.org/10.1002/9781118445112.stat01100.pub2
- Chu X. Configuration and generation of substorm current wedge. Los Angeles: University of California, Los Angeles, 2015. (A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics).
- Coles S. An Introduction to Statistical Modeling of Extreme Values / Springer, London. 2001.
- Feldstein Y.I. Modelling of the magnetic field of magnetospheric ring current as a function of interplanetary medium parameters // Space Sci. Rev. V. 59. P. 83–165. 1992. https://doi.org/10.1007/BF01262538
- Fu H., Yue C., Zong Q.-G., Zhou X.-Z., Fu S. Statistical characteristics of substorms with different intensity // J. Geophys. Res.: Space Physics. V. 126. e2021JA029318. 2021. https://doi.org/10.1029/2021JA029318
- Gonzalez W.D., Echer E., Tsurutani B.T., de Gonzalez A.L.C., Dal Lago A. Interplanetary origin of intense, superintense and extreme geomagnetic storms // Space Sci. Rev. V. 158. № 1. P. 69–89. 2011. https://doi.org/10.1007/s11214-010-9715-2
- Gonzalez W.D., Tsurutani B.T. Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT) // Planetary and Space Science. V. 35. № 9. P. 1101–1109. 1987. https://doi.org/10.1016/0032-0633(87)90015-8
- Gonzalez W.D., Tsurutani B.T., Clúa de Gonzalez A.L. Interplanetary origin of geomagnetic storms // Space Sci. Rev. V. 88. № 3‒4. P. 529–562. 1999. https://doi.org/10.1023/A:1005160129098
- Gonzalez W.D., Tsurutani B.T., Lepping R.P., Schwenn R. Interplanetary phenomena associated with very intense geomagnetic storms // Journal of Atmospheric and Solar-Terrestrial Physics. V. 64. № 2. P. 173–181. 2002. https://doi.org/10.1016/S1364-6826(01)00082-7
- Hajra R., Tsurutani B.T., Echer E., Gonzalez W.D., Gierloev J.W. Supersubstorms (SML < −2500 nT): Magnetic storm and solar cycle dependences // J. Geophys. Res. V. 121. P. 7805–7816. 2016. https://doi.org/10.1002/2015JA021835
- Iyemori T., Araki T., Kamei T., Takeda M. Mid-latitude Geomagnetic Indices “ASY” and “SYM” (Provisional). № 3. 1992 // Data Analysis Center for Geomagnetism and Space Magnetism Faculty of Science Kyoto University, ISSN 0918-5763, 1994.
- Mac-Mahon R.M., Gonzalez W.D. Energetics during the main phase of geomagnetic superstorms // J. Geophys. Res. V. 102. № A7. P. 14199–14207. 1997. https://doi.org/10.1029/97JA01151
- McPherron L.R., Chu X. The Mid-Latitude Positive Bay and the MPB Index of Substorm Activity // Space Sci. Rev. V. 206. P. 91–122. 2017. https://doi.org/10.1007/s11214-016-0316-6
- McPherron L.R., Chu X. The midlatitude positive bay index and the statistics of substorm occurrence // J. Geophys. Res.: Space Physics. V. 123. № 4. P. 2831–2850. 2018. https://doi.org/10.1002/2017JA024766
- McPherron R.L., Russell C.T., Aubry M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms // J. Geophys. Res. V. 78. № 16. P. 3131–3149. 1973. https://doi.org/10.1029/JA078i016p03131
- Meng X., Tsurutani B.T., Mannucci A.J. The Solar and Interplanetary Causes of Superstorms (Minimum Dst ≤ −250 nT) During the Space Age // J. Geophys. Res.: Space Physics. V. 124. № 6. P. 3926–3948. 2019. https://doi.org/10.1029/2018JA026425
- Nakamura M., Yoneda A., Oda M., Tsubouchi K. Statistical analysis of extreme auroral electrojet indices // Earth, Planets and Space. V. 67. Art. 153. 2015. https://doi.org/10.1186/s40623-015-0321-0
- Sergeev V.A., Shukhtina M.A., Stepanov N.A., Rogov D.D., Nikolaev A.V., Spanswick E., Donovan E., Raita T., Kero A. Toward the reconstruction of substorm‐related dynamical pattern of the radiowave auroral absorption // Space Weather. V. 18. № 3. e2019SW002385. 2020. https://doi.org/10.1029/2019SW002385
- Troshichev O.A., Andrezen V.G. The relationship between interplanetary quantities and magnetic activity in the southern polar cap // Planet. Space Sci. V. 33. № 4. P. 415–419. 1985. https://doi.org/10.1016/0032-0633(85)90086-8
- Troshichev O.A., Andrezen V.G., Vennerstrøm S., Friis-Christensen E. Magnetic activity in the polar cap – A new index // Planet. Space Sci. V. 36. № 11. P. 1095–1102. 1988. https://doi.org/10.1016/0032-0633(88)90063-3
- Tsurutani B.T., Gonzalez W.D., Tang F., Lee Y.T. Great geomagnetic storms // Geophysical Research Letters. V. 19. № 1. P. 73–76. 1992. https://doi.org/10.1029/91GL02783
- Tsurutani B.T., Hajra R., Echer E., Gjerloev J.W. Extremely intense (SML ≤ –2500 nT) substorms: isolated events that are externally triggered? // Annales Geophysicae. V. 33. P. 519–524. 2015. https://doi.org/10.5194/angeo-33-519-2015
- Tsubouchi K., Omura Y. Long-term occurrence probabilities of intense geomagnetic storm events // Space Weather. V. 5. № 12. S12003. 2007. https://doi.org/10.1029/2007SW000329
- Tsyganenko N.A., Andreeva V.A., Sitnov M.I., Stephens G.K., Gjerloev J.W., Chu X., Troshichev O.A. Reconstructing Substorms via Historical Data Mining: Is It Really Feasible? // J. Geophys. Res.: Space Physics. V. 126. № 10. e2021JA029604. 2021. https://doi.org/10.1029/2021JA029604
- Wanliss J.A., Showalter K.M. High-resolution global storm index: Dst versus SYM-H // J. Geophys. Res. V. 111. № A2. A02202. 2006. https://doi.org/10.1029/2005JA011034
- Weibull W. A statistical distribution function of wide applicability // J. Appl. Mech.-Trans. ASME. V. 18. № 3. P. 293–297. 1951. https://doi.org/10.1115/1.4010337
- Werner R., Guineva V., Atanassov A., Bojilova R., Raykova L., Valev D., Lubchich A., Despirak I. Calculation of the horizontal power perturbations of the Earth surface magnetic field / Proceedings of the Thirteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”, September, 2021, Book of Proceedings, https://doi.org/10.31401/WS.2021.proc, p. 159–165.
- Zong Q.-G., Yue C., Fu S.-Y. Shock induced strong substorms and super substorms: Preconditions and associated oxygen ion dynamics // Space Sci. Rev. V. 217. № 33. 2021. https://doi.org/10.1007/s11214-021-00806-x
补充文件
