Углеводородный состав продуктов термического и каталитического крекинга асфальтенов, полученных в среде сверхкритической воды

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Изучен углеводородный состав масел продуктов крекинга асфальтенов. Эксперименты проводились в трех различных режимах: без использования добавок (без воды и катализатора – контрольный эксперимент), в среде сверхкритической воды без катализатора и в среде сверхкритической воды с катализатором на основе оксидов железа. Крекинг проводили в реакторе при температуре 450°C, продолжительность эксперимента составляла 60 мин, катализатор получали in situ из трис-ацетилацетонат железа(III). Индивидуальный углеводородный состав масел, выделенных из продуктов крекинга, был определен с помощью хромато-масс-спектрального анализа на квадрупольной системе GСMS-QP5050A “Shimadzu”. Углеводородный состав продуктов крекинга асфальтенов, полученных в среде сверхкритической воды, отличается по качественным и количественным характеристикам от продуктов, полученных без воды. При крекинге асфальтенов в среде воды существенно меняется состав по сравнению с “контрольным экспериментом”, отмечается увеличение доли насыщенных углеводородов. В продуктах крекинга, полученных в среде воды с добавлением катализатора, также доминируют насыщенные углеводороды, при этом существенно увеличивается содержание фталатов, алкенов и серосодержащих соединений.

Полный текст

Доступ закрыт

Об авторах

Х. В. Нальгиева

ФГБУН Институт химии нефти СО РАН

Автор, ответственный за переписку.
Email: nalgieva.1997@gmail.com
Россия, 634055 Томск

Г. С. Певнева

ФГБУН Институт химии нефти СО РАН

Email: pevneva@ipc.tsc.ru
Россия, 634055 Томск

Н. Г. Воронецкая

ФГБУН Институт химии нефти СО РАН

Email: voronetskaya@ipc.tsc.ru
Россия, 634055 Томск

М. А. Копытов

ФГБУН Институт химии нефти СО РАН

Email: kma@ipc.tsc.ru
Россия, 634055 Томск

Список литературы

  1. Кривцов Е.Б., Гончаров А.В., Свириденко Ю.А., Мержигот М.И. // Известия высших учебных заведений. Серия: Химия и химическая технология. 2023. V. 66. № 11. P. 32. https://doi.org/10.6060/ivkkt.20236611.15t
  2. Goncharov A.V., Krivtsov E.B., Sviridenko N.N., Golovko A.K. // IOP Conference Series: Materials Science and Engineering. 2019. V. 597. P. 012022. https://doi.org/10.1088/1757-899X/597/1/012022
  3. Wang, T., Xu J., Liu X., He M. // J. of CO2 Utilization. 2022. V. 66. P. 102248. https://doi.org/10.1016/j.jcou.2022.102248
  4. Sharan P., Thengane S.K., Yoon T.J., Lewis J.C., Singh R., Currier R.P., Findikoglu A.T. // Desalination. 2022. V. 532. P. 115716. https://doi.org/10.1016/j.desal.2022.115716
  5. Song Z., Xiu F.R., Qi Y. // J. of Hazardous Materials. 2022. V. 423. P. 127018. https://doi.org/10.1016/j.jhazmat.2021.127018
  6. Isa K.M., Snape C.E., Uguna C., Meredith W., Deng H. // J. of Analytical and Applied Pyrolysis. 2016. V. 119. P. 180. https://doi.org/10.1016/j.jaap.2016.03.004
  7. Yu J., Jiang C., Guan Q., Gu J., Ning P., Miao R., Zhang J. // Fuel. 2018. V. 217. P. 275. https://doi.org/10.1016/j.fuel.2017.12.113
  8. Yesodharan S. // Current Science. 2002. V. 82. P. 1112. http://www.jstor.org/stable/24106796
  9. Bermejo M.D., Cocero M.J. // American Institute Chemical Engineering J. 2006. V. 52. P. 3933. https://doi.org/10.1002/aic.10993
  10. Kruse A., Dinjus E. // J. Supercritical Fluids. 2007. V. 41. P. 361. https://doi.org/10.1016/j.supflu.2006.12.006
  11. Каюмов Р.А., Сагдеев А.А., Галимова А.Т., Гумеров Ф.М., Усманов Р.А. // Вестник Казанского технологического университета. 2012. V. 15. № 1. P. 43.
  12. Свириденко Н.Н. // Нефтехимия. 2023. V. 63. № 3. P. 391-400. https://doi.org/10.31857/S0028242123030097
  13. Копытов М.А., Головко А.К. // Нефтехимия. 2017. V. 57. №. 1. P. 41. https://doi.org/10.7868/S0028242116060137
  14. Нальгиева Х.В., Копытов М.А. // ХТТ. 2024. № 2. P. 23. https://doi.org/10.31857/S0023117724020059 [Solid Fuel Chemistry, 2024, vol. 58, no. 2. p. 103. https://doi.org/10.3103/S0361521924020083]
  15. Hosseinpour M., Fatemi S., Ahmadi S.J. // Fuel. 2015. V. 159. P. 538. https://doi.org/10.1016/j.fuel.2015.06.086
  16. Туманян Б.П., Петрухина Н.Н., Каюкова Г.П., Нургалиев Д.К., Фосс Л.Е., Романов Г.В. // Успехи химии. 2015. V. 84. №. 11. P. 1145. EDN: VBEXXR
  17. Golovko A.K., Pevneva G.S., Kontorovich A.E. // Geochemistry International. 2000. V. 38. No. 3. P. 246. EDN: LFZJRR.
  18. Антипенко В.Р. Термические превращения высокосернистого природного асфальтита: геохимические и технологические аспекты. Новосибирск: Недра, 2013. 181 c.
  19. Головко А.К., Конторович А.Э., Певнева Г.С., Фурсенко Е.А. // Геология и геофизика. 2014. V. 55. №. 5-6. P. 931. EDN: SMXAXD

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Состав продуктов крекинга асфальтенов.

Скачать (327KB)
3. Рис. 2. Масс-фрагментограммы н-алканов (m/z 57) и метилалкилбензолов (АТ m/z 105) продуктов контрольного эксперимента (а), (б), крекинга в СКВ (в), (г) и крекинга в СКВ + кат. (д), (е).

Скачать (563KB)

© Российская академия наук, 2025