Influence of diluent on alkylmalonamide radiolysis
- 作者: Khalikov T.V.1, Kholodkova E.M.1, Ponomarev A.V.1
-
隶属关系:
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS
- 期: 卷 59, 编号 4 (2025)
- 页面: 223-228
- 栏目: RADIATION CHEMISTRY
- URL: https://j-morphology.com/0023-1193/article/view/687892
- DOI: https://doi.org/10.31857/S0023119325040054
- EDN: https://elibrary.ru/ayaarw
- ID: 687892
如何引用文章
详细
The radiolysis of the extractant N1,N3-dimethyl-N1,N3-dibutyltetradecylmalonamide and its 30% solution in n-tridecane under the action of 3 MeV electrons was studied. The key radiolytic processes are fragmentation of the extractant molecules. The decomposition is predominant along the bonds located in the β-position relative to the carbonyl group: N-Me, N-Bu, C-C14H29 and C-C(O). The C-C(O) bond is the weakest – its cleavage gives more than half of all the extractant degradation products. The observed yield of extractant degradation in solution is almost one and a half times higher than in the undiluted state. At the same time, a decrease in the yield of diluent degradation is observed in the solution. The observed effects indicate partial physical and chemical protection of the diluent by the dissolved extractant.
全文:

作者简介
T. Khalikov
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
E. Kholodkova
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
A. Ponomarev
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
编辑信件的主要联系方式.
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
参考
- Evsiunina M.V., Matveev P.I., Kalmykov S.N., Petrov V.G. // Moscow Univ. Chem. Bull. 2021. V. 76. P. 287
- Matveev P.I., Mohapatra P.K., Kalmykov S.N., Petrov V.G. // Solvent Extr. Ion Exch. 2021. V. 39. P. 679.
- Yang Y., Walton A., Sheridan R., Güth K., Gauß R., Gutfleisch O., Buchert M., Steenari B.-M., Van Gerven T., Jones P.T., Binnemans K. // J. Sustain. Metall. 2017. V 3. P. 122.
- Modolo G., Vijgen H., Serrano‐Purroy D., Christiansen B., Malmbeck R., Sorel C., Baron P. // Sep. Sci. Technol. 2007. V. 42. P. 439.
- Poinssot C., Rostaing C., Baron P., Warin D., Boullis B. // Procedia Chem. 2012. V. 7. P. 358.
- Aderibigbe A.D., Day D.P. // ChemistrySelect. 2020. V. 5. P. 15222.
- Delavente F., Guillot J.-M., Thomas O., Berthon L., Nicol C. // J. Photochem. Photobiol. A Chem. 2003. V. 158. P. 55.
- Delavente F., Guillot J.-M., Thomas O., Berthon L., Nicol C. // J. Photochem. Photobiol. A Chem. 2004. V. 162. P. 81.
- Ponomarev A.V. // Chem. Eng. J. Adv. 2023. V. 15. P. 100513.
- Metreveli A.K., Ponomarev A.V. // High Energy Chem. 2016. V. 50. P. 254.
- Traven V.F., Organic chemistry [Electronic resource]: textbook for universities: in 3 volumes. BINOM. M.: Knowledge Laboratory, 2015.
- Woods R., Pikaev A. Applied radiation chemistry. Radiation processing. NY: Wiley, 1994.
- Vlasov S.I., Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2021. V. 55. P. 393.
- Serenko Y.V., Ponomarev A.V., Belova E.V. // High Energy Chem. 2021. vol. 55. p. 482.
补充文件
