Photophysical properties of pyrene-containing biphotocromic dyads and corresponding cyclobutanes formed from dyads in the [2+2] photocycloaddition reaction

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The photophysical properties of biphotochromic dyads DoX and D10 containing two identical photochromes, 2-[2-(pyrene-1-yl)ethenyl]-quinoline (PEQ), linked by bridge groups of different lengths, as well as the corresponding dipyrenylcyclobutanes CBoX and CB10 formed from the dyads in the [2+2] photocycloaddition reaction (PCA) have been investigated by time-resolved emission spectroscopy (TRES). On the basis of TRES, the number of emitters was determined, their emission spectra, excited state lifetimes, and rate constants of competitive physical and chemical processes (emission, energy transfer, and reactions) were calculated. In dyads, the formation of excimers, possible intermediates of the PCA reaction, was detected by the appearance of emitters with lifetimes significantly increased compared to the model PEQ-photochrome. In cyclobutanes, a decrease in the lifetime of pyrene substituents as compared to 1-methylpyrene shows the energy transfer from substituents to the cyclobutane ring, which, according to the predissociation mechanism, initiates the ring-opening reaction (retro-PCA). In addition, CBoX shows the presence of non-emitting conformers. Quantum chemical calculations by DFT method confirmed the possibility of formation of different conformers of cyclobutane CBoX, differing in the relative position of pyrenyl substituents and the degree of their interaction with each other.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Budyka

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Хат алмасуға жауапты Автор.
Email: budyka@icp.ac.ru
Ресей, Chernogolovka

V. Li

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: budyka@icp.ac.ru
Ресей, Chernogolovka

T. Gavrishova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: budyka@icp.ac.ru
Ресей, Chernogolovka

S. Tovstun

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: budyka@icp.ac.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Liang C.K., Desvergne J.P., Bassani D.M. // Photochem. Photobiol. Sci. 2014. V. 13. P. 316.
  2. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  3. Kirkus M., Janssen R.A. J., Meskers S.C. J. // J. Phys. Chem. A. 2013. V. 17. P. 4828.
  4. Margulies E.A., Shoer L.E., Eaton S.W., Wasielewski M.R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 23735.
  5. Long S., Wang Y., Vdovic S., Zhou M., Yan L., Niu Y., Guo Q., Xia A. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18567.
  6. Cho D.W., Fujitsuka M., Sugimoto A., Majima T. // J. Phys. Chem. A. 2008. V. 112. P. 7208.
  7. Wang S., Bohnsack M., Megow S., Renth F., Temps F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 2080.
  8. Kucukoz B., Adinarayana B., Osuka A., Albinsson B. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16477.
  9. Letrun R., Lang B., Yushchenko O., Wilcken R., Svechkarev D., Kolodieznyi D., Riedle E., Vauthey E. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 30219.
  10. Chahal M.K., Liyanage A., Gobeze H.B., Payne D.T., Ariga K., Hill J.P., D’Souza F. // Chem. Commun. 2020. V. 56. P. 3855.
  11. Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855.
  12. Kim D., Park S.Y. // Optical Mater. 2018. 1800678.
  13. Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481.
  14. Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181.
  15. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. 213695.
  16. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М., Гак В.Ю., Гринева И.А. // Химия высоких энергий. 2018. Т. 52. С. 204.
  17. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2024. Т. 58. С. 77.
  18. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2025. Т. 59. С. 26.
  19. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta Part A. 2022. V. 267. 120565.
  20. Budyka M.F., Fedulova J.A., Gavrishova T.N., Li V.M., Potashova N.I., Tovstun S.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137.
  21. Будыка М.Ф., Гавришова Т.Н., Ли В.М., Дозморов С.А. // Изв. АН. Сер. хим. 2023. Т. 72. С. 2013.
  22. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.
  23. Mazzucato U., Momicchioli F. // Chem. Rev. 1991. V. 91. P. 1679.
  24. Schillmoller T., Herbst-Irmer R., Stalke D. // Adv. Optical Mater. 2021. V. 9. 2001814.
  25. Будыка М.Ф. // Успехи химии. 2012. Т. 81. С. 477.
  26. Ellsei F., Aloisi G.G., Latterini L., Galiazzo G., Gorner H. // J. Chem. Soc. Faraday Trans. 1995. V. 91. P. 3117.
  27. Kovalenko N.P., Abdukadirov A., Gerko V.I., Alfimov M.V. // J. Photochem. 1980. V. 12. P. 59.
  28. Doi T., Kawai H., Murayama K., Kashida H., Asanuma H. // Chem. Eur. J. 2016. V. 22. P. 10533.
  29. Truong V.X., Li F., Ercole F., Forsythe J.S. // ACS Macro Lett. 2018. V. 7. P. 464.
  30. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218.
  31. Winnik F.M. // Chem. Rev. 1993. V. 93. P. 587.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. The [2+2]-photocycloaddition reaction in EE isomers of dyads D10 and DoX with the formation of tetrasubstituted cyclobutanes CB10 and CBoX.

Жүктеу (555KB)
3. Scheme 2. Structure of model compounds, (E)-8-octyloxy-2-[2-(pyren-1-yl)ethenyl]-quinoline (M1) and 1-methylpyrene (MP).

Жүктеу (193KB)
4. Scheme 3. Possible conformers of the rctt isomer of cyclobutane with axial and equatorial positions of substituents; Q is quinolyl, P is pyrenyl, the bridging group between the quinoline substituents is not shown. The numbering of the atoms of the cyclobutane ring is given.

Жүктеу (92KB)
5. Fig. 1. Time-resolved emission spectra (TRES) of the D10 dyad when excited at a wavelength of 372 nm.

Жүктеу (1MB)
6. Fig. 2. Fluorescence decay kinetics (excitation at 372 nm): 1 – model PEQ photochrome M1 (observation at 460 nm), 2 – dyad D10 (observation at 500 nm), 3 – dyad DoX (observation at 472 nm). The red curve is the instrument response function (IRF), the black curves are approximations of the experimental kinetics taking into account the shape of the IRF.

Жүктеу (900KB)
7. Fig. 3. The emission spectra of emitters D10-E1 (1), D10-E2 (2), D10-E3 (3), normalized to the maximum of the total spectrum, calculated using TRES data (excitation at 372 nm), and their total spectrum taking into account lifetimes (4), the stationary fluorescence spectrum of the D10 dyad (5, excitation at 391 nm).

Жүктеу (489KB)
8. Fig. 4. The emission spectra of emitters DoX-E1 (1), DoX-E2 (2), DoX-E3 (3) and their total spectrum (4), calculated according to TRES data (excitation at 372 nm), normalized to the maximum of the total spectrum, and the stationary fluorescence spectrum of the DoX dyad (5, excitation at 392 nm).

Жүктеу (530KB)
9. Fig. 5. Fluorescence decay kinetics in methylene chloride (excitation at 284 nm) 1 – 1-methylpyrene MP (observation at 378 nm): 2 – cyclobutane CB10 (observation at 380 nm): 3 – cyclobutane CBoX (observation at 379 nm). The red curve is the instrument response function (IRF), the black curves are approximations of the experimental kinetics taking into account the shape of the IRF.

Жүктеу (938KB)
10. Fig. 6. The emission spectra of emitters CB10-E1 (1), CB10-E2 (2) and their total spectrum (3), calculated according to TRES data (excitation at 284 nm), normalized to the maximum of the total spectrum, and the stationary fluorescence spectrum of cyclobutane CB10 (4, excitation at 352 nm).

Жүктеу (434KB)
11. Fig. 7. The emission spectra of the emitters CBoX-E1 (1), CBoX-E2 (2) and their total spectrum (3), calculated according to the TRES data (excitation at 284 nm), normalized to the maximum of the total spectrum, and the stationary fluorescence spectrum of cyclobutane CBoX (4, excitation at 351 nm).

Жүктеу (495KB)
12. Fig. 8. Structures of cyclobutane CBoX conformers optimized at the M06-2X/6-31G* level.

Жүктеу (488KB)
13. Fig. 9. Structure of filled molecular orbitals of cyclobutane CBoX conformers calculated at the level of M06-2X/6-31G*, the highest occupied (HOMO) and neighboring (HOMO-1) orbitals.

Жүктеу (939KB)

© Russian Academy of Sciences, 2025