Процессы ионного обмена на катионите Н+ для снижения жесткости воды

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Рассматривается процесс ионообмена на катионите Н+ в картриджах для умягчения воды. Предлагается математическая модель этого процесса, содержащая два настраиваемых параметра, один из которых связан со свойствами катионита. Идентификация параметров модели и проверка ее адекватности осуществлялась по собственным экспериментальным данным. Результаты моделирования позволили выявить ряд особенностей протекания процесса изменения жесткости воды на катионитах Н+, которые будут полезны при решении проектных и поверочных задач в области ионообменных процессов и аппаратов для умягчения воды.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Клинов

Казанский национальный исследовательский технологический университет

Хат алмасуға жауапты Автор.
Email: alklin@kstu.ru
Ресей, Казань

А. Разинов

Казанский национальный исследовательский технологический университет

Email: alklin@kstu.ru
Ресей, Казань

А. Прокопович

ООО “АкваБрит”

Email: alklin@kstu.ru
Ресей, Москва

Е. Саблин

ООО “АкваБрит”

Email: alklin@kstu.ru
Ресей, Москва

Әдебиет тізімі

  1. Crittenden J.C., Trussell R.R., Hand D.W., Howe K.J., Tchobanoglous G. MWH’s Water Treatment: Principles and Design. 3rd ed. John Wiley & Sons, 2012. P 1920.
  2. Vecino X., Reig M. Wastewater treatment by adsorption and/or ion-exchange processes for resource recovery // Water. 2022. V. 14. P. 911. https://doi.org/10.3390/w14060911
  3. Sirajudheen P., Karthikeyan P., Ramkumar K., Meenakshi S. Effective removal of organic pollutants by adsorption onto chitosan supported graphene oxide-hydroxyapatite composite: A novel reusable adsorbent // J. Mol. Liq. 2020. V. 318. https://doi.org/10.1016/j.molliq.2020.114200.
  4. Parsons S.A. The effect of domestic ion-exchange water softeners on the microbiological quality of drinking water // Water Res. 2000. V. 34, Is. 8. P. 2369–2375. https://doi.org/10.1016/S0043–1354(99)00407–8
  5. Al-Sheikh F., Moralejo C., Pritzker M., Anderson W. A., Elkamel A. Batch adsorption study of ammonia removal from synthetic/real wastewater using ion exchange resins and zeolites // Sep. Sci. Technol. 2021. V. 56. № 3. P. 462–473. https://doi.org/10.1080/01496395.2020.1718706
  6. Bashir A., Malik L.A., Ahad S. et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods // Environ Chem. Lett. 2019. V. 17. P. 729–754. https://doi.org/10.1007/s10311-018-00828-y
  7. Dixit F., Dutta R., Barbeau B., Berube P., Mohseni M. PFAS removal by ion exchange resins: A review // Chemosphere. 2021. V. 272. P. 129777.
  8. Simonič M. Reverse osmosis treatment of wastewater for reuse as process water – a case study // Membranes. 2021. V. 11. P. 976. https://doi.org/10.3390/membranes11120976
  9. https://aquabrit.ru/
  10. https://horecawater.ru
  11. https://www.tokem.ru/ru/
  12. Sachin N., Jayshri V., Shilpi K., Amit B., Tapan C., Rajesh B. Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin // Desalination. 2011. V. 276. № 1–3. P. 38–44. https://doi.org/10.1016/j.desal.2011.03.015
  13. Chabani M., Amrane A., Bensmaili A., Kinetic modelling of the adsorption of nitrates by ion exchange resin // Chem. Engin. J. 2006. V. 125. № 2. P. 111–117, https://doi.org/10.1016/j.cej.2006.08.014
  14. Judith K., Reinhold C., Dietmar R. Adsorption and ion exchange: basic principles and their application in food processing // J. Agricult. Food Chem. 2011. V. 59. № 1. P. 22–42 https://doi.org/10.1021/jf1032203
  15. Montes P., Abeywickrama J., Hoth, N., Grimmer M., Drebenstedt, C. Modeling of ion exchange processes to optimize metal removal from complex mine water matrices // Water. 2021. V. 13. P. 3109. https://doi.org/10.3390/w13213109
  16. Boyer T., Miller C., Singer P., Advances in modeling completely mixed flow reactors for ion exchange // J. Environ. Eng. 2010. V. 136. № 10. P. 1128–1138. https://doi.org/10.1061/(ASCE)EE.1943–7870.0000241
  17. Hwang S., Lu W. Ion exchange in a semifluidized bed // Ind. Eng. Chem. Res. 1995. V. 34. № 4. P. 1434–1439. https://doi.org/10.1021/ie00043a052
  18. Hekmatzadeh A., Karimi-Jashani A., Talebbeydokhti N., Kløve B., Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments // Desalination. 2012. V. 284. P. 22–31. https://doi.org/10.1016/j.desal.2011.08.033
  19. LeVav M., Carta G. Perry’s Chemical engineers’ handbook: adsorption and ion exchange. McGraw-Hill Professional: New York, 2007.
  20. Рудобашта С.П. Массоперенос в системах с твердой фазой / Под ред. А.Н. Плановского. М.: Химия, 1980. 248 с.
  21. Шервуд Т., Пигфорд Р., Уилки Ч. Массопередача / Пер. с англ. М.: Химия, 1982. 696 с.
  22. Helfferich F. Ion Exchange. Dover Publications: New York, 1995.
  23. Дьяконов С.Г., Разинов А.И. Описание изобарно-изотермической диффузии в идеальных жидких смесях // Теорет. основы хим. технологии. 1982. Т. 16. № 1. С. 105.
  24. Klinov A., Anashkin I. Diffusion in binary aqueous solutions of alcohols by molecular simulation // Processes. 2019. V. 7. № 12. P. 947. https://doi.org/10.3390/pr7120947
  25. Антропов Л.И. Теоретическая электрохимия. 4-е изд., перераб. и доп. М.: Высш. школа, 1984. 519 с.
  26. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей / Пер. с англ. 3-е изд., перераб. и доп. Л.: Химия, 1982. 592 с.
  27. https://www.mathcad.com/en/
  28. Butler J. N. Carbon dioxide equilibria and their applications. Lewis Publishers, 1991. 272 p.
  29. https://www.msulab.ru/

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental setup diagram: 1 – pressure regulator; 2 – pressure gauge; 3 – flow distribution system in the cartridge; 4 – flow passing through the softening cartridge; 5 – cartridge with two internal chambers; 6 – chamber with ion-exchange resin; 7 – water flow without softening (“bypass” line); 8 – flow mixing chamber; 9 – flow meter combined with a regulator and a water meter; 10 – regulating needle valve.

Жүктеу (205KB)
3. Fig. 2. Water hardness at the outlet of the cartridge d = 68 mm, with a cation exchanger volume of 280 ml, flow rate of 35 l/h, without bypass. Geometric figures are experimental data, lines are calculations.

Жүктеу (130KB)
4. Fig. 3. Water hardness at the outlet of the AQUABRIT-500 cartridge (d = 119 mm, with a cation exchanger volume of 3550 ml, flow rate of 65 l/h, without bypass, water hardness at the inlet KH0 = 7.6°dH, GH0 = 12.4°dH). Geometric figures are experimental data, lines are calculations.

Жүктеу (136KB)
5. Fig. 4. Water hardness at the outlet of the AQUABRIT-500 cartridge (d = 119 mm, with a cation exchanger volume of 3550 ml, flow rate 65 l/h, bypass 50%, water hardness at the inlet KH0 = 7.6°dH, GH0 = 12.4°dH). Geometric figures are experimental data, lines are calculations.

Жүктеу (141KB)
6. Fig. 5. Calculated profiles of the concentrations of Ca2+ (circles), H+ (squares) and (triangles) ions in the AQUABRIT-500 cartridge (d = 119 mm, with a cation exchanger volume of 3550 ml, flow rate of 65 l/h) at a time of 5 h for water hardness at the inlet of KH0 = 8°dH, GH0 = 8.8°dH (a) and KH0 = 8°dH, GH0 = 12°dH (b).

Жүктеу (272KB)
7. Fig. 6. Resource of a cartridge d = 119 mm, with a flow rate of 65 l/h. Squares – with a cation exchanger volume of 1775 ml, circles – 3550 ml, triangles – 7100 ml.

Жүктеу (157KB)
8. Fig. 7. The ratio of the resources of the AQUABRIT-500 cartridge, depending on the ratio of total hardness to carbonate hardness in the inlet water.

Жүктеу (155KB)
9. Fig. 8. The resource of the AQUABRIT-500 cartridge, depending on the bypass share χ relative to the resource at zero bypass at different KH0 values at the input. The required carbonate hardness at the output KH = 6°dH.

Жүктеу (156KB)

© Russian Academy of Sciences, 2024