Вольтамперометрический сенсор на основе композита хитозана, графитированной сажи и полиариленфталида с молекулярными отпечатками для определения кларитромицина

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для селективного определения антибиотика кларитромицина разработан вольтамперометрический сенсор на основе стеклоуглеродного электрода, модифицированного композитом хитозана, графитированной сажи Carboblack C и полиариленфталида, содержащего в основной цепи полимера дифенилентио- и дифениленоксидные фрагменты в соотношении 1 : 2, с молекулярными отпечатками кларитромицина, полученными методом инверсии фаз. С использованием ИК-спектроскопии и сканирующей электронной микроскопии изучены состав и морфология модифицирующего покрытия. Методами спектроскопии электрохимического импеданса, циклической и дифференциально-импульсной вольтамперометрии изучены электрохимические и аналитические характеристики сенсора. Подобраны оптимальные условия регистрации аналитического сигнала. С использованием [Fe(CN)6]3–/4– в качестве зонда линейный диапазон определяемых концентраций составил 1 × 10–7–5 × 10–4 М с пределом обнаружения 5.3 × 10–8 М. Показано, что применение полимера с молекулярными отпечатками кларитромицина повышает чувствительность сенсора практически в 10 раз по сравнению с неимпринтированным полимером. Предложенный сенсор апробирован на образцах урины, плазмы крови, а также пищевых продуктов (мясо, молоко), степень извлечения составила 90–96, 80 и 92% соответственно, а относительное стандартное отклонение не превышало 10% во всех случаях.

Об авторах

Ю. А. Яркаева

Уфимский университет науки и технологий

Автор, ответственный за переписку.
Email: julijajarkaeva05@gmail.com

химический факультет

Россия, ул. Заки Валиди, 32, Уфа, 450076

М. И. Назыров

Уфимский университет науки и технологий

Email: julijajarkaeva05@gmail.com

химический факультет

Россия, ул. Заки Валиди, 32, Уфа, 450076

Д. А. Дымова

Уфимский университет науки и технологий

Email: julijajarkaeva05@gmail.com

химический факультет

Россия, ул. Заки Валиди, 32, Уфа, 450076

В. Н. Майстренко

Уфимский университет науки и технологий

Email: julijajarkaeva05@gmail.com

химический факультет

Россия, ул. Заки Валиди, 32, Уфа, 450076

Список литературы

  1. BelBruno J. Molecularly imprinted polymers // Chem. Rev. 2019. V. 119. P. 94. https://doi.org/10.1021/acs.chemrev.8b00171
  2. Benachio I., Lobato A., Goncalves L.M. Employing molecularly imprinted polymers in the development of electroanalytical methodologies for antibiotic determination // J. Mol. Recognit. 2021. V. 34. P. 2878. https://doi.org/10.1002/jmr.2878
  3. Crapnell R.D., Hudson A., Foster C.W., Eersels K., Grinsven B., Cleij T.J. et al. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection // Sensors. 2019. V. 19. P. 204. https://doi.org/10.3390/s19051204
  4. Wulff G. Fourty years of molecular imprinting in synthetic polymers: Origin, features and perspectives // Microchim Acta. 2013. V. 180. № 15. P. 1359. https://doi.org/10.1007/s00604-013-0992-9
  5. Yarkaeva Y., Maistrenko V., Dymova D., Zagitova L., Nazyrov M. Polyaniline and poly(2-methoxyaniline) based molecular imprinted polymer sensors for amoxicillin voltammetric determination // Electrochim. Acta. 2022. V. 433. Article 141222. https://doi.org/10.1016/j.electacta.2022.141222
  6. Dmitrienko E.V., Pyshnaya I.A., Martyanov O.N., Pyshnyi D.V. Molecularly imprinted polymers for biomedical and biotechnological applications // Russ. Chem. Rev. 2016. V. 85. P. 513. https://doi.org/10.1070/RCR4542
  7. Poller A.-M., Spieker E., Lieberzeit P.A., Preininger C. Surface imprints: Advantageous application of ready2use materials for bacterial quartz-crystal microbalance sensors // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 1129. https://doi.org/10.1021/acsami.6b13888
  8. Dima S.-O., Meouche W., Dobre T., Nicolescu T.-V., Sarbu A. Diosgenin-selective molecularly imprinted pearls prepared by wet phase inversion // React. Funct. Polym. 2013. V. 73. P. 1188. https://doi.org/10.1016/j.reactfunctpolym.2013.05.014
  9. Yang Q., Wu X., Peng H., Fu L., Song X., Li J., Xiong H., Chen L. Simultaneous phase-inversion and imprinting based sensor for highly sensitive and selective detection of bisphenol A // Talanta. 2018. V. 176. P. 595. https://doi.org/10.1016/j.talanta.2017.08.075
  10. Mulder M. Basic Principles of membrane technology. Kluwer: Dordrecht, 1991.
  11. Wang H.Y., Kobayashi T., Fujii N. Molecular imprint membranes prepared by the phase inversion precipitation technique // Langmuir. 1996. V. 12. P. 4850. https://doi.org/10.1021/la960243y
  12. Noaman U.H., Park J.K. Optical resolution of phenylalanine using D-Phe-imprinted poly(acrylic acid-co-acrylonitrile) membrane: Racemate solution concentration effect // Polym. Composite. 2008. V. 29. P. 949. https://doi.org/10.1002/pc.20479
  13. Tasselli F., Donato L., Drioli E. Evaluation of molecularly imprinted membranes based on different acrylic copolymers // J. Membrane Sci. 2008. V. 320. P. 167. https://doi.org/10.1016/j.memsci.2008.03.071
  14. Silvestri D., Barbani N., Cristallini C., Giusti P., Ciardelli G. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium // J. Membrane Sci. 2006. V. 282. P. 284. https://doi.org/10.1016/j.memsci.2006.05.031
  15. Mkhize D.S., Nyoni H., Quinn L.P., Mamba B.B., Msagati T.A.M. Molecularly imprinted membranes (MIMs) for selective removal of polychlorinated biphenyls (PCBs) in environmental waters: fabrication and characterization // Environ. Sci. Pollut. Res. Int. 2017. V. 24. P. 11694. https://doi.org/10.1007/s11356-017-8829-4
  16. Kobayashi T., Murawaki Y., Reddy P.S., Abe M., Fujii N. Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance // Anal. Chim. Acta. 2001. V. 435. P. 141. https://doi.org/10.1016/S0003-2670(00)01281-2
  17. Qiu Z., Fan D., Xue X., Guo S., Lin Y., Chen Y., Tang D. Molecularly imprinted polymer functionalized Bi2S3/Ti3C2TX MXene nanocomposites for photoelectrochemical/electrochemical dual-mode sensing of chlorogenic acid // Chemosensors. 2022. V. 10. P. 252. https://doi.org/10.3390/chemosensors10070252
  18. Reddy P.S., Kobayashi T., Abe M., Fujii N. Molecular imprinted Nylon-6 as a recognition material of amino acids // Eur. Polym. J. 2002. V. 38. P. 521. https://doi.org/10.1016/S0014-3057(01)00212-9
  19. Abdel-Shafy H.I., Sayour H.E., Mansour M.S.M. Molecular imprinted membrane based on molecular imprinted nanoparticles polymer for separation of polycyclic aromatic hydrocarbons // Polym. Adv. Technol. 2016. V. 27. P. 724. https://doi.org/10.1002/pat.3704
  20. Donato L., Tasselli F., Drioli E. Molecularly imprinted membranes with affinity properties for folic acid // Sep. Sci. Technol. 2010. V. 45. P. 2273. https://doi.org/10.1080/01496395.2010.510089
  21. Barbani N., Rosellini E., Donati M., Costantino P., Cristallini C., Ciardelli G. Molecularly imprinted polymers by phase inversion technique for the selective recognition of saccharides of biomedical interest in aqueous solutions // Polym. Int. 2017. V. 66. P. 900. https://doi.org/10.1002/pi.5334
  22. Ciobanu M., Marin L., Cozan V., Bruma M. Aromatic polysulfones used in sensor applications // Rev. Adv. Mater. Sci. 2009. V. 22. P. 89
  23. Kraikin V., Fatykhov A., Gileva N., Kravchenko A., Salazkin S. NMR study of dyadic and triadic splitting in copoly(arylene)phthalides based on diphenyl oxide and diphenyl sulfide // Magn. Reson. Chem. 2020. V. 59. № 1. P. 61. https://doi.org/10.1002/mrc.5079
  24. Салазкин С.Н., Шапошникова В.В., Мачуленко Л.Н., Гилева Н.Г., Крайкин В.А., Лачинов А.Н. Синтез полиариленфталидов, перспективных в качестве “умных” полимеров // 2008. Т. 50. № 3. С. 399. (Salazkin S., Shaposhnikova V., Machulenko L., Gileva N., Kraikin V., Lachinov A. Synthesis of polyarylenephthalides prospective as smart polymers // Polym. Sci. Ser. A. 2008. V. 50. № 3. P. 243. https://doi.org/10.1134/S0965545X08030024)
  25. Гилева Н.Г., Крайкин В.А., Седова Э.А., Лобов М.С., Кузнецов С.И., Салазкин С.Н. Регулирование состава и микроструктуры сополиариленфталидов // Журн. прикл. химии. 2005. Т. 78. № 10. С. 1712. (Gileva N., Kraikin V., Sedova E., Lobov M., Kuznetsov S., Salazkin S. Control over the composition and microstructure of copoly(arylene phthalides) // Russ. J. Appl. Chem. 2005. V. 78. № 10. P. 1683. https://doi.org/10.1007/S11167-005-0586-3)
  26. Salikhov R., Zilberg R., Mullagaliev I., Salikhov T., Teres Y. Nanocomposite thin film structures based on polyarylenephthalide with SWCNT and graphene oxide fillers // Mendeleev Commun. 2022. V. 32. P. 520. https://doi.org/10.1016/j.mencom.2022.07.029
  27. Yarkaeva Y., Maistrenko V., Zagitova L., Nazyrov M., Berestova T. Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers // J. Electroanal. Chem. 2021 V. 903. Article 115839; https://doi.org/10.1016/j.jelechem.2021.115839
  28. Zagitova L., Yarkaeva Y., Zagitov V., Nazyrov M., Gainanova S., Maistrenko V. Voltammetric chiral recognition of naproxen enantiomers by N-tosylproline functionalized chitosan and reduced graphene oxide based sensor // J. Electroanal. Chem. 2022. V. 992. Article 116774. https://doi.org/10.1016/j.jelechem.2022.116744
  29. Jafari S., Dehghani M., Nasirizadeh N., Azimzadeh M. An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano urchins/graphene oxide modified glassy carbon electrode // J. Electroanal. Chem. 2018. V. 829. P. 27. https://doi.org/10.1016/j.jelechem.2018.09.053
  30. Шендерович В.А., Пастернак Н.А., Столярова Л.Г., Соловьева В.Е., Власова И.В., Ведьмиа Е.А., Шевелева С.А. Экспресс-метод определения антибиотиков в пищевых продуктах. Методические указания. 29 марта 1995 г. МУК 4.2.026–95.
  31. Jafari M., Tashkhourian J., Absalan G. Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: Scanometry and spectrophotometry approaches // Talanta. 2018. V. 178. P. 870. https://doi.org/10.1016/J.TALANTA.2017.10.005
  32. Lasia A. Electrochemical impedance spectroscopy and its applications. Springer: New York, 2014. 10.1007/978-1-4614-8933-7
  33. Kul A., Ozdemir M., Sagirl O. Pharmacokinetic study of clarithromycin in human breast milk by UPLC–MS/MS // J. Pharm. Biomed. Anal. 2022. V. 208. Article 114438. https://doi.org/10.1016/j.jpba.2021.114438
  34. Chu S.-Y., Sennello L.T., Sonders R.C. Simultaneous determination of clarithromycin and 14(R)-hydroxyclarithromycin in plasma and urine using high-performance liquid chromatography with electrochemical detection // J. Chromatogr. B: Biomed. Appl. 1991. V. 571. № 1–2. P. 199. https://doi.org/10.1016/0378-4347(91)80446-J
  35. Zuckerman J.M., Qamar F., Bono B.R. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline) // Med. Clin. North Am. 2011. V. 95. № 4. P. 761. https://doi.org/10.1016/j.mcna.2011.03.012

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024