Вольтамперометрические сенсоры на основе мезопористой графитированной сажи и производных циклопентадиена для определения и распознавания энантиомеров клопидогреля

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для распознавания и определения энантиомеров клопидогреля создана сенсорная система на основе стеклоуглеродного электрода, модифицированного мезопористой сажей Carbopack X и производными циклопентадиена – (1S)-2-циклопента-2,4-диен-1-ил-1,7,7-триметилбицикло[2.2.1]гептан; (1S, 2S, 4R)-2-циклопента-1,3-диен-1-ил-1-изопропил-4-метилциклогексан; 9-[(1S,2S,5R)-2-изопропил-5-метилциклогексил]-9H-флуорен. Благодаря уникальным свойствам Carbopack X, таким как большая площадь поверхности и высокая проводимость, удалось получить механически стабильный и чувствительный сенсорный слой, который прочно удерживает молекулы хирального селектора на своей поверхности. Методами сканирующей электронной микроскопии, спектроскопии электрохимического импеданса, циклической и дифференциально-импульсной вольтамперометрии изучены морфологические, электрохимические и аналитические свойства полученных сенсоров. Проведено определение энантиомеров клопидогреля в биологических жидкостях, линейные зависимости токов пиков окисления от их концентрации в растворе для всех сенсоров сохраняются в диапазоне концентраций от 1 × 10–6 до 5 × 10–4 М. Сенсоры обладают перекрестной чувствительностью, что позволило объединить их в сенсорную систему с высокой энантиоселективностью и чувствительностью по отношению к энантиомерам клопидогреля. При использовании предложенной сенсорной системы вероятность правильного распознавания образцов возрастает по сравнению с единичными сенсорами. Во всех случаях содержание R-клопидогреля в смеси установлено правильно с относительной погрешностью, не превышающей 9%, и степенью открытия от 96 до 102%.

Об авторах

М. И. Назыров

Уфимский университет науки и технологий

Автор, ответственный за переписку.
Email: mnazyrov@list.ru

Институт химии и защиты в чрезвычайных ситуациях

Россия, ул. Заки Валиди, 32, Уфа, 450076

Ю. А. Перфилова

Уфимский университет науки и технологий

Email: mnazyrov@list.ru

Институт химии и защиты в чрезвычайных ситуациях

Россия, ул. Заки Валиди, 32, Уфа, 450076

Я. Р. Абдуллин

Уфимский университет науки и технологий

Email: mnazyrov@list.ru

Институт химии и защиты в чрезвычайных ситуациях

Россия, ул. Заки Валиди, 32, Уфа, 450076

П. В. Ковязин

Институт нефтехимии и катализа Уфимского федерального исследовательского центра Российской академии наук

Email: mnazyrov@list.ru
Россия, ул. Проспект Октября, 141, Уфа, 450075

В. Н. Майстренко

Уфимский университет науки и технологий

Email: mnazyrov@list.ru

Институт химии и защиты в чрезвычайных ситуациях

Россия, ул. Заки Валиди, 32, Уфа, 450076

Список литературы

  1. Herbert J.M., Savi P. P2Y12, a new platelet ADP receptor, target of clopidogrel // Semin. Vasc. Med. 2003. V. 3. P. 113. https://doi.org/10.1055/s-2003-40669
  2. Pereillo J.M., Maftouh M., Andrieu A., Uzabiaga M.F., Fedeli O., Savi P., et al. Structure and stereochemistry of the active metabolite of clopidogrel // Drug Metab. Dispos. 2002. V. 30. P. 1288. https://doi.org/10.1124/dmd.30.11.1288
  3. Richter T., Murdter T.E., Heinkele G., Poleis J., Tatzel S., Schwab M., et al. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine // J. Pharmacol. Exp. Ther. 2004. V. 308. P. 189. https://doi.org/10.1124/jpet.103.056127
  4. The United States pharmacopeial convention. United States Pharmacopeia, 28th Ed. Rockville, Maryland, USA: United States Pharmacopeial Convention, 2005. 516 p.
  5. Reist M., Vos M.R., Montseny J.P., Mayer J.M., Carrupt P.A., Berger Y., Testa B. Very slow chiral inversion of clopidogrel in rats: A pharmacokinetic and mechanistic investigation // Drug Metab. Dispos. 2000. V. 28. P. 1405.
  6. Gomez Y., Adams E., Hoogmartens J. Analysis of purity in 19 drug product tablets containing clopidogrel: 18 copies versus the original brand // J. Pharm. Biomed. Anal. 2004. V. 34. P. 341. https://doi.org/10.1016/S0731-7085(03)00533-8
  7. Fayed A.S., Weshahy S.A., Shehata M.A., Hassan N.Y., Pauwels J., Hoogmartens J., Schepdael A.V. Separation and determination of clopidogrel and its impurities by capillary electrophoresis // J. Pharm. Biomed. Anal. 2009. V. 49. P. 193. https://doi.org/10.1016/j.jpba.2008.10.031
  8. Mladenovic A.R., Jovanovic V.M., Petrovic S.D., Mijin D.Z., Drmanic S., Ivic M.L.A. Determination of clopidogrel using square wave voltammetry at a gold electrode // J. Serb. Chem. Soc. 2013. P. 78. P. 2131. https://doi.org/10.2298/JSC130913116M
  9. Dizavandi Z.R., Aliakbar A., Sheykhan M. Electrocatalytic determination of clopidogrel using Bi2O3-pp-AP/GCE by differential pulse voltammetry in pharmaceutical productions // J. Electroanal. Chem. 2017. P. 805.
  10. Alghamdi A.F. Electrochemical and chromatographic studies of clopidogrel using cathodic stripping voltammetry and HPLC under new experimental conditions and its determination in the preparation tablet, urine and plasma samples // J. Chem. Pharm. Res. 2015. V. 7. P. 1023.
  11. Sharad S.U., Pramod K.K., Ashwini K.S. Enantioselective biomimetic sensor for discrimination of R and S-Clopidogrel promoted by β-cyclodextrin complexes employing graphene and platinum nanoparticle modified carbon paste electrode // J. Electroanal. Chem. 2019. V. 840. P. 305. https://doi.org/10.1016/j.jelechem.2019.03.068
  12. Boulet L., Faure P., Flore P., Monteremal J., Ducros V. Simultaneous determination of tryptophan and 8 metabolites in human plasma by liquid chromatography/tandem mass spectrometry // J. Chromatog. B. 2017. V. 1054. P. 36. https://doi.org/10.1016/j.chromb.2017.04.010
  13. Ashwin B.C.M.A., Shanmugavelan P., Mareeswaran P.M. Electrochemical aspects of cyclodextrin, calixarene and cucurbituril inclusion complexes // J. Incl. Phen. Macrocycl. Chem. 2020. V. 98. P. 149. https://doi.org/10.1007/s10847-020-01028-4
  14. Khan S.B., Lee S.L. Supramolecular chemistry: Host–guest molecular complexes // Molecules. 2021. V. 26. P. 3995. https://doi.org/10.3390/molecules2613399
  15. Niu X., Mo Z., Yang X., Sun M., Zhao P., Li Z., et al. Advances in the use of functional composites of beta-cyclodextrin in electrochemical sensors // Microchim. Acta. 2018. V. 185. P. 328. https://doi.org/10.1007/s00604-018- 2859-6
  16. Zilberg R.A., Maistrenko V.N., Kabirova L.R., Dubrovsky D.I. Selective voltammetric sensors based on composites of chitosan polyelectrolyte complexes with cyclodextrins for the recognition and determination of atenolol enantiomers // Anal. Methods. 2018. V. 10. P. 1886. https://doi.org/10.1039/c8ay00403j
  17. Zilberg R.A., Maistrenko V.N., Yarkaeva Yu.A., Dubrovsky D.I. An enantioselective voltammetric sensor system based on glassy carbon electrodes modified by polyarylenephthalide composites with cyclodextrins for recognizing D- and L-tryptophans // J. Anal. Chem. 2019. V. 74. P. 1237. https://doi.org/10.1134/S1061934819110133
  18. Moein M.M. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade // Talanta. 2020. V. 224. P. 121. https://doi.org/10.1016/j.talanta.2020.121794
  19. Rutkowska M., Płotka-Wasylka J., Morrison C., Wieczorek P.P., Namieśnik J., Marć M. Application of molecularly imprinted polymers in analytical chiral separations and analysis // Trends Anal. Chem. 2018. V. 102. P. 91. https://doi.org/10.1016/j.trac.2018.01.011
  20. Zhong C., Yang B., Jiang X., Li J. Current progress of nanomaterials in molecularly imprinted electrochemical sensing // Crit. Rev. Anal. Chem. 2018. V. 48. P. 15. https://doi.org/10.1080/10408347.2017.1360762
  21. Canfarotta F., Rapini R., Piletsky S. Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers // Curr. Opin. Electrochem. 2018. V. 7. P. 146. https://doi.org/10.1016/j.coelec.2017.11.018
  22. Ma W., Xu L.G., Wang L.B., Xu C.L., Kuang H. Chirality-based biosensors // Adv. Func. Mater. 2019. V. 29. Article 1805512. https://doi.org/10.1002/adfm.201805512
  23. Wattanakit C., Kuhn A. Encoding chiral molecular information in metal structures // Chem. Eur. J. 2019. V. 26. P. 2993. https://doi.org/10.1002/chem.201904835
  24. Chen L.J., Yang H.B., Shionoya M. Chiral metallosupramolecular architectures // Chem. Soc. Rev. 2017. V. 46 P. 2555. https://doi.org/10.1039/c7cs00173h
  25. Zhuo C., Wen Y., Wu X. Strategies to construct homochiral metal-organic frameworks: Ligands selection and practical techniques // Cryst. Eng. Comm. 2016. V. 18. P. 2792. https://doi.org/10.1039/C5CE02593A
  26. Chuang C.H., Kung C.W. Metal-organic frameworks toward electrochemical sensors: Challenges and opportunities // Electroanalysis. 2020. V. 32. P. 1885. https://doi.org/10.1002/elan.202060111
  27. Tashiro S., Shionoya M. Novel porous crystals with macrocycle-based well-defined molecular recognition sites // Acc. Chem. Res. 2020. V. 53. P. 632. https://doi.org/10.1021/acs.accounts.9b00566
  28. Attard G.A. Electrochemical studies of enantioselectivity at chiral metal surfaces // J. Phys. Chem. B. 2001. V. 105. P. 3158. https://doi.org/10.1021/jp0041508
  29. Arnaboldi S., Magni M., Mussini P.R. Enantioselective selectors for chiral electrochemistry and electroanalysis: Stereogenic elements and enantioselection performance // Curr. Opin. Electrochem. 2018. V. 8. P. 60. https://doi.org/10.1016/J.COELEC.2018.01.002
  30. Wattanakit C., Kuhn A. Encoding chiral molecular information in metal structures // Chem. Eur. J. 2019. V. 26. P. 2993. https://doi.org/10.1002/chem.201904835
  31. Zagitova L.R., Maistrenko V.N., Yarkaeva Yu.A., Zagitov V.V., Zilberg R.A., Kovyazin P.V., Parfenova L.V. Novel chiral voltammetric sensor for tryptophan enantiomers based on 3-neomenthylindene as recognition element // J. Electroanal. Chem. 2021. V. 880. Article 114939. https://doi.org/10.1016/j.jelechem.2020.114939
  32. Zagitova L.R., Yarkaeva Yu.A., Zagitov V.V., Nazyrov M.I., Gainanova S.I., Maistrenko V.N. Voltammetric chiral recognition of naproxen enantiomers by N-tosylproline functionalized chitosan and reduced graphene oxide based sensor // J. Electroanal. Chem. 2022. V. 922. P. 11674. https://doi.org/10.1016/j.jelechem.2022.116744
  33. Yarkaeva Yu.A., Nazyrov M.I., Abdullin Y.R., Kovyazin P.V., Maistrenko V.N. Enantioselective voltammetric sensor based on mesoporous graphitized carbon black Carbopack X and fulvene derivative // Chirality. 2023. V. 35. № 9. P. 625. https://doi.org/10.1002/chir.23563
  34. Goyal R.N., Gupta V.K., Bachheti N. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone – An anabolic steroid used in doping // Anal. Chim. Acta. 2007. V. 597. P. 82. https://doi.org/10.1016/j.aca.2007.06.017
  35. Esbensen K.H. Multivariate Analysis – In Practice. Oslo: CAMO Process AS, 2001. 597 с.
  36. Pomerantsev A.L. Chemometrics in Excel. New York: Wiley, 2014. 313 с.
  37. Yarkaeva Yu.A., Maistrenko V.N., Zagitova L.R., Nazyrov M.I., Berestova T.V. Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers // J. Electroanal. Chem. 2021. V. 903. Article 115839. https://doi.org/10.1016/j.jelechem.2021.115839
  38. Zagitova L.R., Maistrenko V.N., Yarkaeva Yu.A., Zagitov V.V., Zilberg R.A., Kovyazin P.V., Parfenova L.V. Novel chiral voltammetric sensor for tryptophan enantiomers based on 3-neomenthylindene as recognition element // J. Electroanal. Chem. 2021. V. 880. Article 114939. https://doi.org/10.1016/j.jelechem.2020.114939
  39. Яркаева Ю.А., Исламуратова Е.Н., Загитова Л.Р., Гуськов В.Ю., Зильберг Р.А., Майстренко В.Н. Cенсор для распознавания и определения энантиомеров триптофана на основе модифицированного энантиоморфными кристаллами бромтрифенилметана угольно-пастового электрода // Журн. аналит. химии. 2021. Т. 76. № 11. С. 1038. https://doi.org/10.31857/S0044450221110177 (Yarkaeva Y.A., Islamuratova E.N., Zagitova L.R., Gus'kov V.Y., Zil'berg R.A., Maistrenko V.N. A sensor for the recognition and determination of tryptophan enantiomers based on carbon-paste electrode modified by enantiomorphic crystals of bromotriphenylmethane // J. Anal. Chem. 2021. V. 76. № 11. P. 1345. https://doi.org/10.1134/S1061934821110162)
  40. Zilberg R.A., Sidelnikov A.V., Maistrenko V.N., Yarkaeva Y.A., Khamitov E.M., Kornilov V.M., Maksutova E.I. Voltammetric sensory system for recognition of propranolol enantiomers based on glassy carbon electrodes modified by polyarylenephthalide composites of melamine and cyanuric acid // Electroanalysis. 2018. V. 30. P. 619. https://doi.org/10.1002/elan.201700404
  41. Cesarotti E., Kagan H.B., Goddard R., Krüger C. Synthesis of new ligands for transition metal complexes: Menthyl- and neomenthyl-cyclopentadienes // J. Organomet. Chem. 1978. V. 162. P. 297. https://doi.org/10.1016/S0022-328X(00)81401-1
  42. Silver S., Puranen A., Sjöholm R., Repo T., Leino R. Chiral indenes and group-4 metallocene dichlorides containing- and pinenyl-derived ligand substituents: synthesis and catalytic applications in polymerization and carboalumination reactions // Eur. J. Inorg. Chem. 2005. V. 2005. № 8. P. 1514. https://doi.org/10.1002/ejic.200400882
  43. Erker G., Aulbach M., Knickmeier M., Wingbermuhle D., Krueger C., Nolte M., Werner S. The role of torsional isomers of planarly chiral nonbridged bis(indenyl)metal type complexes in stereoselective propene polymerization // J. Am. Chem. Soc. 1993. V. 115. No.11. P.4590. https://doi.org/10.1021/ja00064a022.
  44. Lasia A. Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer New York. 2014. 367 с.
  45. Зильберг Р.А., Яркаева Ю.А., Максютова Э.И., Сидельников А.В., Майстренко В.Н. Вольтамперометрическая идентификация инсулина и его аналогов с использованием модифицированных полиариленфталидами стеклоуглеродных электродов // Журн. аналит. химии. 2017. Т. 72. № 4. С. 348. https://doi.org/10.7868/S004445021704020X (Zil’berg R.A., Yarkaeva Yu.A., Maksyutova E.I., Sidel’nikov A.V., Maistrenko V.N. Voltammetric identification of insulin and its analogues using glassy carbon electrodes modified with polyarylenephthalides // J. Anal. Chem. 2017. V. 72. № 4. P. 402. https://doi.org/10.1134/S1061934817040177)
  46. Зильберг Р.А., Яркаева Ю.А., Сидельников А.В., Майстренко В.Н., Крайкин В.А., Гилева Н.Г. Вольтамперометрическое определение бисопролола на модифицированном полиариленфталидами стеклоуглеродном электроде // Журн. аналит. химии. 2016. Т. 71. № 9. С. 964. https://doi.org/10.7868/S004445021609019X (Zil’berg R.A., Yarkaeva Yu.A., Sidel’nikov A.V., Maistrenko V.N., Kraikin V.A., Gileva N.G. Voltammetric determination of bisoprolol on a glassy carbon electrode modified by poly(arylene phthalide) // J. Anal. Chem. 2016. V. 71. № 9. P. 926. https://doi.org/10.1134/S1061934816090173)
  47. Сидельников А.В., Зильберг Р.А., Яркаева Ю.А., Майстренко В.Н., Крайкин В.А. Вольтамперометрическая идентификация антиаритмических лекарственных средств с использованием метода главных компонент // Журн. аналит. химии. 2015. Т. 70. № 10. С. 1095. https://doi.org/10.7868/S0044450215100151 (Sidel’nikov A.V., Zil’berg R.A., Yarkaeva Yu.A., Maistrenko V.N., Kraikin V.A. Voltammetric identification of antiarrhythmic medicines using principal component analysis // J. Anal. Chem. 2015. V. 70. № 10. P. 1261. https://doi.org/10.1134/S1061934815100159)
  48. Esbensen K.H. Multivariate Data Analysis – In Practice. CAMO Process. 2002. 158 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024