Электрохимический ДНК-сенсор на доксорубицин на основе композитов оксида графена, электрополимеризованного Азура А и Метиленового зеленого
- Авторы: Порфирьева А.В.1, Хуснутдинова З.Ф.1, Евтюгин Г.А.1
-
Учреждения:
- Казанский федеральный университет
- Выпуск: Том 79, № 6 (2024)
- Страницы: 639-652
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Статья получена: 31.01.2025
- URL: https://j-morphology.com/0044-4502/article/view/650212
- DOI: https://doi.org/10.31857/S0044450224060119
- EDN: https://elibrary.ru/ttlogg
- ID: 650212
Цитировать
Аннотация
Разработан вольтамперометрический ДНК-сенсор для определения доксорубицина, сигналом которого служит изменение тока редокс-медиатора Метиленового зеленого, регистрируемое с помощью циклической вольтамперометрии на стеклоуглеродном электроде, модифицированном электрохимически восстановленным оксидом графена, электрополимеризованным Азуром А и ДНК, насыщенной Метиленовым зеленым. Установлено влияние природы полимерного слоя и используемого редокс-медиатора на чувствительность определения доксорубицина. При оптимальном составе поверхностного слоя ДНК-сенсор позволяет определять до 0.01 пМ доксорубицина. Сенсор апробирован на ряде модельных (искусственная урина, раствор Рингера–Локка, раствор бычьего сывороточного альбумина) и биологических образцов (слюна, урина), содержащих доксорубицин.
Об авторах
А. В. Порфирьева
Казанский федеральный университет
Автор, ответственный за переписку.
Email: porfireva-a@inbox.ru
Химический институт им. А.М. Бутлерова
Россия, ул. Кремлевская, 18, Казань, 420008З. Ф. Хуснутдинова
Казанский федеральный университет
Email: porfireva-a@inbox.ru
Химический институт им. А.М. Бутлерова
Россия, ул. Кремлевская, 18, Казань, 420008Г. А. Евтюгин
Казанский федеральный университет
Email: porfireva-a@inbox.ru
Химический институт им. А.М. Бутлерова
Россия, ул. Кремлевская, 18, Казань, 420008Список литературы
- Congur G. Electrochemical biosensors for monitoring of drug-DNA interactions // Curr. Top. Med. Chem. 2023. V. 23, № 4. P. 316.
- Negahdary M., Sharma A., Anthopoulos T.D., Angnes L. Recent advances in electrochemical nanobiosensors for cardiac biomarkers // TrAC, Trends Anal. Chem. 2023.V. 164. Article 117104.
- Kadam U.S., Hong J.C. Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment // Trends Environ. Anal. Chem. 2022. V. 36. Article e00184.
- Pashaei Y., Mehrabi M., Shekarchi M. A review on various analytical methods for determination of anthracyclines and their metabolites as anti-cancer chemotherapy drugs in different matrices over the last four decades // TrAC, Trends in Anal. Chem. 2020. V. 130. Article 115991.
- Campuzano S., Pedrero M., Yáñez-Sedeño P., M. Pingarrón J. New challenges in point of care electrochemical detection of clinical biomarkers // Sens. Actuators, B. 2021. V. 345. Article 130349.
- Huang X., Shi W., Bao N., Yu C. Electrochemically reduced graphene oxide and gold nanoparticles on an indium tin oxide electrode for voltammetric sensing of dopamine // Microchim. Acta. 2019. V. 186. № 5. Article 310.
- Lin X., Lian X., Luo B., Huang X.-C. A highly sensitive and stable electrochemical HBV DNA biosensor based on ErGO-supported Cu-MOF // Inorg. Chem. Commun. 2020. V. 119. Article 108095.
- Zhou A., Bai J., Hong W., Bai H. Electrochemically reduced graphene oxide: Preparation, composites, and applications // Carbon. 2022. V. 191. P. 301.
- Tran L.T., Tran H.V., Cao H.H., Tran T.H., Huynh C.D. Electrochemically effective surface area of a polyaniline nanowire-based platinum microelectrode and development of an electrochemical DNA sensor // J. Nanotechnol. 2022. V. 2022. Article 8947080.
- Dalkiran B., Brett C.M. A. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: A review // Microchim. Acta. 2021. V. 188. Article 178.
- Agrisuelas J., Gimenez-Romero D., Garcıa-Jareno J.J., Vicente F. Vis/NIR spectroelectrochemical analysis of poly-(Azure A) on ITO electrode // Electrochem. Commun. 2006. V. 8. № 4. P. 549.
- Chen С., Mu S. Electrochemical polymerization of azure A and properties of poly(azure A) // J. Appl. Polym. Sci. 2003. V. 88. № 5. P. 1218.
- Evtugyn G., Porfireva A., Plastinina K., Evtugyn V., Kuzin Y. Electrochemical DNA sensor based on poly(Azure A) obtained from the buffer saturated with chloroform // Sensors. 2021. V. 21. № 9. Article 2949.
- Gao Q., Wang W., Ma Y., Yang X. Electrooxidative polymerization of phenothiazine derivatives on screen-printed carbon electrode and its application to determine NADH in flow injection analysis system // Talanta. 2004. V. 62. № 3. P. 477.
- Liu T., Luo Y., Zhu J., Kong L., Wang W., Tan L. Non-enzymatic detection of glucose using poly(azureA)-nickel modified glassy carbon electrode // Talanta. 2016. V. 156-157. P. 134.
- Gao Q., Sun M., Peng P., Qi H., Zhang C. Electro-oxidative polymerization of phenothiazine dyes into a multilayer-containing carbon nanotube on a glassy carbon electrode for the sensitive and low-potential detection of NADH // Microchim. Acta. 2010. V. 168. P. 299.
- Porfireva A., Begisheva E., Rogov A., Evtugyn G. One-step electropolymerization of Azure A and carbon nanomaterials for DNA-sensor assembling and doxorubicin biosensing // C–Journal of Сarbon Research. 2022. V. 8. Article 75.
- Goida A., Kuzin Y., Evtugyn V., Porfireva A., Evtugyn G., Hianik T. Electrochemical sensing of idarubicin—DNA interaction using electropolymerized azure B and methylene blue mediation // Chemosensors. 2022. V. 10. Article 33.
- Evtugyn G.A., Porfireva A.V., Belyakova S.V. Electrochemical DNA sensors for drug determination // J. Pharm. Biomed. Anal. 2022. V. 221. Article 115058.
- Zhou M., Wang Y., Zhai Y., Zhai J., Ren W., Wang F., Dong S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films // Chem. Eur. J. 2009. V. 15. № 25. P. 6116.
- Sha Y., Gao Q., Qi B., Yang X. Electropolymerization of Azure B on a screen-printed carbon electrode and its application to the determination of NADH in a flow injection analysis system // Microchim. Acta. 2004. V. 148. P. 335.
- Pérez-Arnaiz C., Busto N., Leal J.M., García B. New insights into the mechanism of the DNA/doxorubicin Interaction // J. Phys. Chem. B. 2014. V. 118. № 5. P. 1288.
- Behravan M., Aghaie H., Giahi M., Maleknia L. Determination of doxorubicin by reduced graphene oxide/gold/polypyrrole modified glassy carbon electrode: A new preparation strategy // Diamond Relat. Mater. 2021. V. 117. Article 108478.
- Rajaji U., Yogesh K.K., Chen S.-M., Raghu M.S., Parashuram L., Alzahrani F.M., et al. Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: electrochemical sensing tool for doxorubicin // Microchim. Acta. 2021. V. 188. Article 303.
- Ouyang Y., Liang M. Wang F., Mei S., Mo G. Direct electrochemistry of doxorubicin and its ultrasensitive detection using a novel porous thorny carbon dodecahedron // New J. Chem. 2022. V. 46. P. 23039.
- Lv N., Qiu X., Han Q., Xi F., Wang Y., Chen J. Anti-biofouling electrochemical sensor based on the binary nanocomposite of silica nanochannel array and graphene for doxorubicin detection in human serum and urine samples // Molecules. 2022. V. 27. № 24. Article 8640.
- Sun S., Xu X., Niu A., Sun Z., Zhai Y., Li S., Xuan C., Zhou Y., Yang X., Zhou T., Tian Q. Novel electrochemical sensor based on acetylene black for the determination of doxorubicin in serum samples // Int. J. Electrochem. Sci. 2022. V. 17. № 11. Article 221187.
- Singh Th. A., Sharma V., Thakur N., Tejwan N., Sharma A., Das J. Selective and sensitive electrochemical detection of doxorubicin via a novel magnesium oxide/carbon dot nanocomposite based sensor // Inorg. Chem. Commun. 2023. V. 150. Article 110527.
- Kulikova T., Porfireva A., Rogov A., Evtugyn G. Electrochemical DNA sensor based on acridine yellow adsorbed on glassy carbon electrode // Sensors. 2021. V. 21. № 22. Article 7763.
- Kong F., Luo J., Jing L., Wang Y., Shen H., Yu R., Sun S., Xing Y., Ming T., Liu M., Jin H., Cai X. Reduced graphene oxide and gold nanoparticles-modified electrochemical aptasensor for highly sensitive detection of doxorubicin // Nanomaterials. 2023. V. 13. № 7. Article 1223.
- Moghadam F.H., Taher M.A., Karimi-Maleh H. Doxorubicin anticancer drug monitoring by ds-DNA-based electrochemical biosensor in clinical samples // Micromachines. 2021. V. 12. № 7. Article 808.
- Kappo D., Shurpik D., Padnya P., Stoikov I., Rogov A., Evtugyn G. Electrochemical DNA sensor based on carbon black—poly(methylene blue)—poly(neutral red) composite // Biosensors. 2022. V. 12. № 5. Article 329.
- Laube N., Mohr B., Hesse A. Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines // J. Cryst. Growth. 2001. V. 233. № 1-2. P. 367.
Дополнительные файлы
