Экспериментальные данные и анализ некоторых особенностей кинетики реакции синтеза этил ацетата при 323.15 K

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Представлены результаты экспериментального исследования кинетики реакции этерификации в системе уксусная кислота – этанол – этилацетат – вода при 323.15 K для реакционных (стехиометрических) линий в разных концентрационных областях. Рассмотрены особенности вида различных кинетически кривых, влияние относительных количеств кислоты и спирта на скорость реакции. На основании полученных данных проведен анализ кинетических уравнений, возможности их применения для описания рассматриваемой реакции.

Об авторах

Г. Х. Мисикова

Санкт-Петербургский государственный университет

198504, Санкт-Петербург, Россия

А. А. Самарова

Санкт-Петербургский государственный университет

198504, Санкт-Петербург, Россия

М. А. Трофимова

Санкт-Петербургский государственный университет

198504, Санкт-Петербург, Россия

А. М. Тойкка

Санкт-Петербургский государственный университет

Email: a.toikka@spbu.ru
198504, Санкт-Петербург, Россия

Список литературы

  1. Kabilan M., Paul P., Duraipandiyan V., Muthupandi M.J. // Nat. Pestic. Res. 2024. V. 10. 100090. doi: 10.1016/j.napere.2024.100090.
  2. Marino D.J. Ethyl Acetate. Encyclopedia of Toxicology. 2nd Edition / Chief Editor: Philip Wexler: Elsevier. 2005. P. 277–279. doi: 10.1016/B0-12-369400-0/00390-2.
  3. Li X., Wang M., Chu Y. et al. // Chem. Eng. J. 2024. V. 487. 150588. doi: 10.1016/j.cej.2024.150588.
  4. Supang W., Ngamprasertsith S., Sakdasri W., Sawangkeaw R. // J. Supercrit. Fluids. 2022. V. 186. 105586. doi: 10.1016/j.supflu.2022.105586.
  5. Malaika A., Ptaszyńska K., Morawa Eblagon K. et al. // Fuel. 2021. V. 304. Article 121381. doi: 10.1016/j.fuel.2021.121381.
  6. Jayant K., Gupta C., Seethamraju S., Mahajani S.M. // Sep. Purif. Technol. 2024. V. 331. 125650. doi: 10.1016/j.seppur.2023.125650.
  7. Ersingün D., Aldemir A. // Desalin. Water Treat. 2024. V. 317. 100117. doi: 10.1016/j.dwt.2024.100117.
  8. Chen Y., Zhang Q., Liu K. et al. // Process Saf. Environ. Prot. 2023. V. 171. P. 607. doi: 10.1016/j.psep.2023.01.057.
  9. Wang Z., Zhang Y., Zhang Z. et al. // Chin. J. Chem. Eng. 2023. V. 53. P. 63. doi: 10.1016/j.cjche.2022.02.012.
  10. Zhu M.H.., Feng Z.J.., Hua X.M. et al. // Microporous Mesoporous Mater. 2016. V. 233. P. 171. doi: 10.1016/j.micromeso.2016.01.038.
  11. Dawameh F., Elmutasim O., Gaber D. et al. // Mol. Catal. 2021. V. 501. Article 111371. doi: 10.1016/j.mcat.2020.111371.
  12. Merchant S.Q., Almohammad K.A., Al Bassam A.A., Ali S.H. // Fuel. 2013. V. 111. P. 140. doi: 10.1016/j.fuel.2013.04.016.
  13. Finger P.H., Osmari T.A., Costa J.M.C. et al. // Appl. Catal. A. 2020. V. 589. 117236. doi: 10.1016/j.apcata.2019.117236.
  14. Guliani D., Sobti A., Pal Toor A. // Mater. Today. Proc. 2021. V. 41. № 4. P. 805. doi: 10.1016/j.matpr.2020.08.751.
  15. Xu D., Ma H., Cheng F. // Mater. Res. Bull. 2014. V. 53. P. 15. doi: 10.1016/j.materresbull.2014.01.029.
  16. He R., Dong Y., Muhammad Y. et al. // Chem. Eng. Res. Des. 2018. V. 137. P. 235. doi: 10.1016/j.cherd.2018.07.020.
  17. Itoh N., Ishida J., Sato T., Hasegawa. Y. // Catal. Today. 2016. V. 268. P. 79. doi: 10.1016/j.cattod.2016.02.027.
  18. Liu Q., Shi J., Wang T. et al. // Chem. Eng. J. Adv. 2021. V. 6. 100088. doi: 10.1016/j.ceja.2021.100088.
  19. Lin Y.K., Nguyen V.H., Yu J.C.C. et al. // J. Taiwan Inst. Chem. Eng. 2017. V. 79. P. 23–30. doi: 10.1016/j.jtice.2017.06.031.
  20. Meng D., Dai Y., Xu Y. // Process Saf. Environ. Prot. 2020. V. 140. P. 14. doi: 10.1016/j.psep.2020.04.039
  21. Singh D., Gupta R.K., Kumar V. // Comput. Chem. Eng. 2015. V. 73. P. 70. doi: 10.1016/j.compchemeng.2014.11.007.
  22. Cheng H., Zhong J.1, Dai Y. et al. // J. Cleaner Product. 2023. V. 421. 138565. doi: 10.1016/j.jclepro.2023.138565
  23. Fernandez M.F., Barroso B., Meyer, X.M. // Comput. Aided Chem. Eng. 2012. V. 30. P. 787. doi: 10.1016/B978-0-444-59520-1.50016-6
  24. Brandt S., Horstmann S., Steinigeweg S., Gmehling J. // Fluid Phase Equilibria. 2014. V. 376. P. 48. doi: 10.1016/j.fluid.2014.05.031
  25. Chilev Ch., Simeonov E. // J. Chem. Techn. Metal. 2017. V. 52. Issue 3. P. 463.
  26. Arora S., Srivastava P. // Int. J. Sci. Res. 2014. V. 3. Issue 12. P. 2571.
  27. Ascani M., Sadowski G., Held Ch. // Molecules. 2023. V. 28. 1768. doi: 10.3390/molecules28041768
  28. Toikka M., Samarov A., Trofimova M. et al. // Fluid Phase Equilib. 2014. V. 373. P. 72. doi: 10.1016/j.fluid.2014.04.013
  29. Trofimova M., Sadaev A., Samarov A. et al. // Ibid. 2020. V. 503. 112321. doi: 10.1016/j.fluid.2019.112321.
  30. Trofimova M., Toikka M., Toikka A. // Ibid. 2012. V. 313. P. 46. doi: 10.1016/j.fluid.2011.09.035.
  31. Trofimova M., Samarov A., Misikov G., Zaripova S. // Russ. J. Gen. Chem. 2024. V. 94. P. S165. doi: 10.1134/S1070363224140172.
  32. Golikova A., Samarov A., Trofimova M. et al. // J. Solution Chem. 2017. V. 46. P. 374. doi: 10.1007/s10953-017-0583-1.
  33. Toikka A.M., Trofimova M.A., Toikka M.A. // Russ. Chem. Bull. 2012. V. 61. № 3. P. 662. doi: 10.1007/s11172-012-0097-3.
  34. Misikov G., Trofimova M., Prikhodko I. // Chemistry. 2023. V. 5. № 4. P. 2542. doi: 10.3390/chemistry5040165.
  35. Misikov G.K., Toikka M.A., Toikka A.M. // Russ. J. Phys. Chem. 2024. V. 98. P. 1981. doi: 10.1134/S0036024424701115.
  36. Toikka A.M., Misikov G. Kh., Volodina N.Y. et al. // Ibid. 2024. V. 98. P. 1478. doi: 10.1134/S003602442470047X.
  37. Kondepudi D., Prigogine I. Modern Thermodynamics: From Heat Engines to Dissipative Structures. Chichester, West Sussex, United Kingdom: ‎John Wiley & Sons, Ltd, 2015. 523 p.
  38. Prigogine I., Defay R. Chemical Thermodynamics. Harlow, UK: Longmans, Green and Co., 1954. 533 p.
  39. Первухин О.К. // Журн. физ. химии. 1989. Т. 63. № 8. С. 2067.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025