Никельсодержащие катализаторы на основе рисовой шелухи для гидрирования диоксида углерода с получением метана
- Авторы: Родинa В.Ю.1, Новоторцев Р.Ю.2, Магдалинова Н.А.1, Савилов С.В.2,3
-
Учреждения:
- Ивановский государственный университет
- Московский государственный университет имени М. В. Ломоносова
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
- Выпуск: Том 99, № 7 (2025)
- Страницы: 1004-1015
- Раздел: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- Статья получена: 17.10.2025
- Статья опубликована: 15.07.2025
- URL: https://j-morphology.com/0044-4537/article/view/693641
- DOI: https://doi.org/10.7868/S3034553725070055
- ID: 693641
Цитировать
Полный текст



Аннотация
Предложен синтез никелевого катализатора гидрирования диоксида углерода до метана на носителе, полученном пиролизом рисовой лузги. Оригинальный синтетический подход заключается в отжиге рисовой шелухи в присутствии нитрата никеля при 500–700°C, что сокращает трудоемкость, затраты времени и энергии на синтез. Сравнение никелевых катализаторов, полученных с использованием различных условий прокаливания в разное количество стадий, показывает, что предложенный метод позволяет достичь активности (18.8 ч–1), сопоставимой с литературными данными. При этом промотирование Mn существенно улучшает его показатели. Данный подход может иметь важное значение для разработки эффективных катализаторов гидрирования СО2 с получением метана и дальнейшего применения рисовой лузги в катализе.
Ключевые слова
Об авторах
В. Ю. Родинa
Ивановский государственный университет
Email: viacheslav.rodin@chemistry.msu.ru
Иваново, Россия
Р. Ю. Новоторцев
Московский государственный университет имени М. В. ЛомоносоваМосква, Россия
Н. А. Магдалинова
Ивановский государственный университетИваново, Россия
С. В. Савилов
Московский государственный университет имени М. В. Ломоносова; Институт нефтехимического синтеза им. А. В. Топчиева РАНМосква, Россия; Москва, Россия
Список литературы
- MohdRidzuan N.D., Shaharun M.S., Anawar M.A., Ud-Din I. // Catalysts. 2022. V. 12. № 5. P. 469. https://doi.org/10.3390/catal12050469.
- Netskina O.V., Dmitruk K.A., Mazina O.I. et al. // Mater. 2023. V. 16. № 7. P. 2616. https://doi.org/10.3390/ma16072616.
- Lim J.Y., Safder U., How B.S. et al. // Appl. Energy. 2021. V. 283. P. 116302. https://doi.org/10.1016/j.apenergy.2020.116302.
- Šnajdrová V., Hlinčík T., Ciahotný K., Polák L. // Chem. Pap. 2018. V. 72. P. 2339. https://doi.org/10.1007/s11696-018-0456-0.
- Aziz M.A.A., Jalil A.A., Triwahyono S. et al. // Appl. Catal. B. 2014. V. 147. P. 359. https://doi.org/10.1016/j.apcatb.2013.09.015.
- Rahmani S., Rezaei M., Meshkani F. // J. Ind. Eng. Chem. 2014. V. 20. № 6. P. 4176. https://doi.org/10.1016/j.jiec.2014.01.017.
- Singh B. Rice husk ash. In Woodhead Publishing Series in Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete / Eds. R. Siddique, P. Cachim. Woodhead Publishing. 2018. P. 417. https://doi.org/10.1016/B978-0-08-102156-9.00013-4.
- Mazilan M.S.R., Sulaiman S.Z., Semawi N.H. et al. // Mater. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.08.143.
- Chernyak S., Rodin V., Novotortsev R.et al. // Catal. Today. 2023. V. 424. P. 113846. https://doi.org/10.1016/j.cattod.2022.07.014.
- Paviotti M.A., Salazar Hoyos L.A., Busilacchio V. et al. // J. CO2 Util. 2020. V. 42. P. 101328. https://doi.org/10.1016/j.jcou.2020.101328.
- Thommes M. et al. // Pure and applied chemistry. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
- Lv C., Xu L., Chen M. et al. // Front. Chem. 2020. V. 8. P. 269. https://doi.org/10.3389/fchem.2020.00269.
- Ye R.-P., Gong W., Sun Z. et al. // Energy. 2019. V. 188. P. 116059. https://doi.org/10.1016/j.energy.2019.116059.
- Zhu P., Chen Q., Yoneyama Y., Tsubaki N. // RSC Adv. 2014. № 4. P. 64617. https://doi.org/10.1039/C4RA12861C.
- Zhao Z.W., Zhou X., Liu Y.-N. et al. // Catal. Sci. Technol. 2018. Т. 8. № 12. P. 3160. https://doi.org/10.1039/C8CY00468D.
Дополнительные файлы
