Термохимические процессы и старение субмикронной пленки вольфрама на поверхности стеклянных микросфер
- Авторы: Садовничий Д.Н.1, Милехин Ю.М.1, Коптелов А.А.1, Малинин С.А.1, Рогозина А.А.1, Шереметьев К.Ю.1
-
Учреждения:
- Федеральный центр двойных технологий “Союз”
- Выпуск: Том 99, № 7 (2025)
- Страницы: 1102-1112
- Раздел: ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ И ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ
- Статья получена: 17.10.2025
- Статья опубликована: 15.07.2025
- URL: https://j-morphology.com/0044-4537/article/view/693652
- DOI: https://doi.org/10.7868/S3034553725070168
- ID: 693652
Цитировать
Полный текст



Аннотация
Ключевые слова
Об авторах
Д. Н. Садовничий
Федеральный центр двойных технологий “Союз”
Email: soyuz@fcdt.ru
Дзержинский, Россия
Ю. М. Милехин
Федеральный центр двойных технологий “Союз”Дзержинский, Россия
А. А. Коптелов
Федеральный центр двойных технологий “Союз”Дзержинский, Россия
С. А. Малинин
Федеральный центр двойных технологий “Союз”Дзержинский, Россия
А. А. Рогозина
Федеральный центр двойных технологий “Союз”Дзержинский, Россия
К. Ю. Шереметьев
Федеральный центр двойных технологий “Союз”Дзержинский, Россия
Список литературы
- Wang W., Li Q., Li Y. et al. // J. Phys. D: Appl. Phys. 2009. V. 42 (21). P. 215306. https://doi.org/10.1088/0022-3727/42/21/215306
- Трофимов Н.Н., Канович М.З., Карташов Э.М. и др. Физика композиционных материалов. М.: Мир, 2005. Т. 2. 344 с.
- Валеев А.С., Красников Г.Я. // Микроэлектроника. 2015. Т. 44. № 3. С. 180. https://doi.org/10.7868/S0544126915030084 [Valeev A.S., Krasnikov G.Y. // Russ. Microelectron. 2015. V. 44. № 3. P. 154. https://doi.org/10.1134/S1063739715030087].
- Choi D., Barmak K. // Electron. Mater. Lett. 2017. V. 13. P. 449. https://doi.org/10.1007/s13391-017-1610-5
- Зеликман А.Н. Металлургия тугоплавких редких металлов. М.: Металлургия, 1986. 440 с.
- Hitchman M.L., Jobson A.D., Kwakman L.F. Tz. // Appl. Surf. Sci. 1989. V. 38 (1–4). P. 312. https://doi.org/10.1016/0169-4332(89)90552-7
- Szörényi T., Piglmayer K., Zhang G.Q., Bäuerle D. // Surf. Sci. 1988. V. 202 (3). P. 442. https://doi.org/10.1016/0039-6028(88)90046-5
- Creighton J.R., Parmeter J.E. // Crit. Rev. Solid State Mater. Sci. 1993. V. 18 (2). P. 175. https://doi.org/10.1080/10408439308242560
- Душик В.В., Рожанский Н.В., Залавутдинов Р.Х. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2019. № 10. С. 36. https://doi.org/10.1134/S0207352819100093
- Wang S., He Y., Liu X. et al. // J. Cryst. Growth. 2011. V. 316 (1). P. 137. https://doi.org/10.1016/j.jcrysgro.2010.10.222
- Davazoglou D., Moutsakis A., Valamontes V. et al. // J. Electrochem. Soc. 1997. V. 144 (2). P. 595. https://doi.org/10.1149/1.1837453
- Velicu L., Tiron V., Porosnicu C. et al. // Appl. Surf. Sci. 2017. V. 424. Part 3. P. 397. https://doi.org/10.1016/j.apsusc.2017.01.067
- Engwalla A.M., Shina S.J., Baeb J., Wang Y.M. // Surf. Coat. Technol. 2019. V. 363. P. 191. https://doi.org/10.1016/j.surfcoat.2019.02.055
- Томаев В.В., Сохович Е.В., Мякин С.В. и др. // Физика и химия стекла. 2022. Т. 48. № 1. С. 85. https://doi.org/10.31857/S0132665122010152
- Dellasega D., Bollani M., Anzi L. et. al. // Thin Solid Films. 2018. V. 666. P. 121. https://doi.org/10.1016/j.tsf.2018.09.042
- Chookajorn T., Murdoch H.A., Schuh C.A. // Science. 2012. V. 337. P. 951. https://doi.org/10.1126/science.1224737
- Liu J., Barmak K. // Acta Mater. 2016. V. 104. P. 223. https://doi.org/10.1016/j.actamat.2015.11.049
- Spanu D., Recchia S., Schmuki P., Altomare M. // Phys. Status Solidi RRL. 2020. V. 14. P. 2000235. https://doi.org/10.1002/pssr.202000235
- Wang C., He Y.H., Hou L.Z. // Nano. 2013. V. 08 (01). P. 1350010. https://doi.org/10.1142/S1793292013500100
- Костомаров Д.В. // Кристаллография. 2016. Т. 61. № 2. С. 311.
- Donaldson O.K., Hattar K., Kaub T. et al. // J. Mater. Res. 2018. V. 33. P. 68. https://doi.org/10.1557/jmr.2017.296
- Lillard R.S., Kanner G.S., Butt D.P. // J. Electrochem. Soc. 1998. V. 145 (8). P. 2718. https://doi.org/10.1149/1.1838704
- Anik M., Osseo-Asare K. // J. Electrochem. Soc. 2002. V. 149 (6). P. B224. https://doi.org/10.1149/1.1471544.
- Калинчак В.В., Орловская С.Г., Грызунова Т.В. // Теплофизика высоких температур. 2003. Т. 41. № 3. С. 465. [Kalinchak V.V., Orlovskaya S.G., Gryzunova T.V. // High Temp. 2003. V. 41. P. 408. https://doi.org/10.1023/A:1024255030006].
- Громов А.А., Квон Я.С., Ильин А.П., Верещагин В.И. // Журн. физ. химии. 2004. Т. 78. № 9. С. 1698. [Gromov A.A., Il’in A.P., Vereshchagin V.I., Kwon Y.S. // Russ. J. Phys. Chem. A. 2004. V. 78 (9). С. 1484].
- Nowak C., Kirchheim R., Schmitz G. // Appl. Phys. Lett. 2006. V. 89. P. 143104. https://doi.org/10.1063/1.2358203
- You G.F., John T.L. // J. Appl. Phys. 2010. V. 108, P. 094312. https://doi.org/10.1063/1.3504248
- Mokrushin V.V., Tsarev M.V., Korshunov K.V. et al. // Int. J. Self-Propag. High-Temp. Synth. 2014. V. 23 (1). P. 26. https://doi.org/10.3103/S1061386214010099
- Novocontrol Technologies GmbH & Co. KG, WinDETA 5.84, Owner’s Manual.
- Chen S., Wang J., Wu R. et al. // J. Mater. Sci. Technol. 2021. V. 90 (10). P. 66. https://doi.org/10.1016/j.jmst.2021.02.027
- Liu J., Barmak K. // Acta Mater. 2016. V. 104. P. 223. http://dx.doi.org/10.1016/j.actamat.2015.11.049
- Киреев В.А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1975. 536 с.
- Мотт H., Дэвис Э. Электронные процессы в некристаллических материалах. / Пер с англ. Под ред. Б.Т. Коломийца. М.: МИР, 1978. 472 с. [Mott N.F., Davis E.A. Electronic processes in non-crystalline materials. Oxford: Clarendon Press, 1971].
- Зеликман А.Н., Никитина Л.С. Вольфрам. М.: Металлургия, 1978. 272 с.
- Sun H.L., Song Z.X., Guo D.G. et al. // J. Mater. Sci. Technol. 2010. V. 26 (1). P. 87. https://doi.org/10.1016/S1005-0302(10)60014-X
- Zheng H., Ou J.Z., Strano M.S. et al. // Adv. Funct. Mater. 2011. V. 21 (12). P. 2175. https://doi.org/10.1002/adfm.201002477
- Bandi S., Srivastav A.K. // J. Mater. Sci. 2021. V. 56. P. 6615. https://doi.org/10.1007/s10853-020-05757-2
- Yao Y., Sang D., Duan S. et al. // Nanotechnology. 2021. V. 32. P. 332501.
- Cheng H., Klapproth M., Sagaltchik A. et al. // J. Mater. Chem. A. 2018. V. 6. P. 2249. https://doi.org /10.1039/C7TA09579A
- Жужельский Д.В., Ялда К.Д., Спиридонов В.Н. и др. // Журн. общ. химии. 2018. Т. 88. № 3. С. 493. [Zhuzhel’skii D.V., Yalda K.D., Spiridonov V.N. et al. // Russ. J. Gen. Chem. 2018. V. 88 (3). P. 520. https://doi.org /10.1134/S1070363218030209].
- Zhuiykov S., Kats E., Carey B., Balendhran S. // Nanoscale. 2014. V. 6. P. 15029. https://doi.org/10.1039/c4nr05008h
- Yang H., Suna H., Lia Q. et al. // Vacuum. 2019. V. 164. P. 411. http://doi.org/10.1016/j.vacuum.2019.03.053
- Козюхин С.А., Бедин С.А., Рудаковская П.Г. и др. // Физика и техника полупроводников. 2018. Т. 52. № 7. С. 745. https://doi.org/10.21883/FTP.2018.07.46046.8719 [Kozyukhin S.A., Rudakovskaya P.G., Ivanova O.S et al. // Semiconductors. 2018. V. 52 (7). P. 885. https://doi.org/10.1134/S1063782618070114].
- Химическая энциклопедия. М.: Издательство “Советская энциклопедия”, 1988. Т. 1. С. 418.
- Третьяков Ю.Д., Мартыненко Л.И., Григорьев А.Н., Цивадзе А.Ю. Неорганическая химия. Химия элементов: Учебник в двух томах. Т. 1. М.: Изд-во МГУ; ИКЦ “Академкнига”, 2007. 537 с.
- Костомаров Д.В., Багдасаров Х.С., Антонов Е.В. // Докл. академии наук. 2012. Т. 446. № 4. С. 407.
- Костомаров Д.В., Багдасаров Х.С., Антонов Е.В. // Там же. 2012. Т. 442. № 5. С. 631.
- Казенас Е.К., Цветков Ю.В., Астахова Г.К. и др. // Физика и химия обработки материалов. 2020. № 4. С. 80. https://doi.org/10.30791/0015-3214-2020-4-80-84
- Лопатин С.И. // Журн. общ. химии. 2007. Т. 77. Вып. 11. С. 1761. [Lopatin S.I. // Russ. J. Gen. Chem. 2007. V. 77 (11). P. 1823. https://doi.org/10.1134/S1070363207110011]
- Садовничий Д.Н., Милехин Ю.М., Казаков Е.Д. и др. // Изв. Академии наук. Серия химическая. 2023. Т. 72. № 9. С. 2048. [Sadovnichii D.N., Milekhin Yu.M., Kazakov E.D. et al. // Russ. Chem. Bull. 2023. V. 72 (9). P. 2048. https://doi.org/10.1007/s11172-023-3999-3].
Дополнительные файлы
