Ways to modernize the setup for studying fluorescence and phosphorescence excitation spectra of polyaromatic hydrocarbon molecules cooled in an inert gas jet

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The experimental setup for obtaining fluorescence excitation spectra of molecules cooled in a supersonic inert gas jet is described. Fluorescence excitation spectra of substituted aldehyde molecules cooled in a supersonic jet are recorded using this setup. The spectra obtained using the setup is concluded to have a better signal-to-noise ratio as compared to the spectra known from publications. Further ways to modify the setup for registration of excitation spectra of sensibilized phosphorescence and phosphorescence of semivolatile molecules of polyaromatic hydrocarbons are considered.

Texto integral

Acesso é fechado

Sobre autores

R. Terentyev

M. V. Lomonosov Moscow State University

Autor responsável pela correspondência
Email: terentyev_ruslan@mail.ru

Department of Chemistry

Rússia, Moscow

D. Maslov

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Rússia, Moscow

N. Yakovlev

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Rússia, Moscow

A. Stolyarov

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Rússia, Moscow

I. Godunov

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Rússia, Moscow

Bibliografia

  1. Smalley R.E., Wharton L., Levy D.H. // Acc. Chem. Res. 1977. V. 10. № 4. P. 139.
  2. Мурга М.С., Вибе Д.З., Васюнин А.И. и др. // Успехи химии. 2020. V. 89. № 4. С. 430.
  3. Петухов В.А., Саввина Л.П. // Приборы и техника эксперимента. 1984. № 4. С. 170.
  4. Godunov I.A., Yakovlev N.N., Terentiev R.V., et al.// Phys. Chem. Chem. Phys. 2016. V. 18. № 22. P. 15244.
  5. Godunov I.A., Yakovlev N.N., Terentiev R.V., et al. // J. Quant. Spectrosc. Radiat. Transf. 2016. V.184. P. 341.
  6. Godunov I.A., Terentiev R.V., Maslov D.V., et al. // Struct. Chem. 2019. V. 30. № 2. P. 529.
  7. Maslov D. V., Povedailo V.A., Yakovlev D.L., et al. // Ibid. 2013. V. 24. № 4. P. 1265.
  8. Numata Y., Watahiki M., Toriyama H., et al. // J. Photochem. Photobiol. A Chem. 1997. V. 106. № 1—3. P. 101.
  9. Abe H., Kamei S., Mikami N., Ito M. // Chem. Phys. Lett. 1984. V. 109. № 3. P. 217.
  10. Ohta N., Baba H. // Mol. Phys. 1986. V. 59. № 5. P. 921.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup for obtaining fluorescence excitation spectra of molecules cooled in a supersonic jet. Legend: SM — stepper motor, RP — rotary prism, F — filter, OV — optical fiber, D — diaphragm, L — lens, OO — optical window, OK — optical cuvette, VK — vacuum valve, PD — photodiode, PMT — photomultiplier tube.

Baixar (262KB)
3. Fig. 2. Fluorescence excitation spectra of the oxalyl chloride molecule cooled in a jet, obtained in [7] (a), and obtained on the setup described in this work (b).

Baixar (149KB)
4. Fig. 3. Schematic diagram of the experiment in fluorescence excitation spectroscopy and sensitized phosphorescence of molecules cooled in a supersonic jet.

Baixar (126KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025