Development of a new combined approach to the synthesis of a cathode material based on a solid solution of the composition Li2CoMn3O8

封面

如何引用文章

全文:

详细

Cathode materials based on solid solutions of the composition Li2CoMn3O8 were obtained by a combined method and their characteristics were studied. It was found that Li2CoMn3O8 has high electrochemical properties, which makes it a promising cathode material for lithium-ion batteries, an alternative to LiCoO2. Using X-ray phase analysis and spectrometry, the resulting phases were identified and their chemical composition was determined. Electron microscopy and Brunauer–Emmett–Teller methods were used to study the structure and morphology. A technological scheme for the production of Li2CoMn3O8 has been proposed, which ensures the formation of nano-sized samples with a high specific surface area and improved electrochemical characteristics. The electrochemical properties of the synthesized samples were studied.

全文:

受限制的访问

作者简介

R. Korneykov

Sakhalin State University; Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of Russian Academy of Sciences

Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk; Apatity

V. Efremov

Sakhalin State University; Institute of North Industrial Ecology Problems Separate subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center “Kola Science Center”

编辑信件的主要联系方式.
Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk; Apatity

S. Aksenova

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of Russian Academy of Sciences

Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity

K. Kesarev

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of Russian Academy of Sciences

Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity

O. Akhmetov

Sakhalin State University

Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk

O. Shcherbina

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of Russian Academy of Sciences

Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity

I. Elizarova

Institute of North Industrial Ecology Problems Separate subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center “Kola Science Center”

Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity

I. Tananaev

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of Russian Academy of Sciences

Email: v.efremov@ksc.ru
俄罗斯联邦, Apatity

O. Shichalin

Sakhalin State University

Email: v.efremov@ksc.ru
俄罗斯联邦, Yuzhno-Sakhalinsk

参考

  1. Lim J., Choi A., Kim H. et al. // J. Power Sources. 2019. V. 426. P. 162. https://doi.org/10.1016/j.jpowsour.2019.04.011
  2. Oh Y., Nam S., Wi S. et al. // Electron. Mater. Lett. 2012. V. 8. № 2. P. 91. https://doi.org/10.1007/s13391-012-2058-2
  3. Ohzuku T., Brodd R.J. // J. Power Sources. 2007. V. 174. № 2. P. 449. https://doi.org/10.1016/j.jpowsour.2007.06.154
  4. Hata M., Tanaka T., Kato D. et al. // Electrochemistry. 2021. V. 89. № 3. P. 223. https://doi.org/10.5796/electrochemistry.20-65151
  5. Deng S., Xue L., Li Y. et al. // J. Electrochem. Energy Convers. Storage. 2019. V. 16. № 3. Р. 031004. https://doi.org/10.1115/1.4042552
  6. Belmesov A.A., Glukhov A.A., Kayumov R.R. et al. // Coatings. 2023. V. 13. № 12. P. 2075. https://doi.org/10.3390/coatings13122075
  7. Kalaiselvi N., Periasamy P., Thirunakaran R. et al. // Ionics (Kiel). 2001. V. 7. № 4–6. P. 451. https://doi.org/10.1007/BF02373583
  8. Minakshi M., Sharma N., Ralph D. et al. // Electrochem. Solid-State Lett. 2011. V. 14. № 6. P. A86. https://doi.org/10.1149/1.3561764
  9. Divakaran A.M., Minakshi M., Bahri P.A. et al. // Prog. Solid State Chem. 2021. V. 62. P. 100298. https://doi.org/10.1016/j.progsolidstchem.2020.100298
  10. Wang R.-C., Lin Y.-C., Wu S.-H. // Hydrometallurgy. 2009. V. 99. № 3–4. P. 194. https://doi.org/10.1016/j.hydromet.2009.08.005
  11. Monajjemi M., Mollaamin F., Thu P.T. et al. // Russ. J. Electrochem. 2020. V. 56. № 8. P. 669. https://doi.org/10.1134/S1023193520030076
  12. Martha S.K., Nanda J., Veith G.M. et al. // J. Power Sources. 2012. V. 199. P. 220. https://doi.org/10.1016/j.jpowsour.2011.10.019
  13. Sivajee Ganesh K., Purusottam reddy B., Jeevan Kumar P. et al. // J. Electroanal. Chem. 2018. V. 828. P. 71. https://doi.org/10.1016/j.jelechem.2018.09.032
  14. Kalyani P. // J. Power Sources. 2002. V. 111. № 2. P. 232. https://doi.org/10.1016/S0378-7753(02)00307-5
  15. Ramesh Babu B., Periasamy P., Thirunakaran R. et al. // Int. J. Inorg. Mater. 2001. V. 3. № 4–5. P. 401. https://doi.org/10.1016/S1466-6049(01)00023-X
  16. Thirunakaran R., Kalaiselvi N., Periasamy P. et al. // Ionics (Kiel). 2001. V. 7. № 3. P. 187. https://doi.org/10.1007/BF02419227
  17. Bianchini M., Roca‐Ayats M., Hartmann P. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 31. P. 10434. https://doi.org/10.1002/anie.201812472
  18. Wang Y., Shadow Huang H.-Y. // MRS Proc. 2011. V. 1363. Art. 530. https://doi.org/10.1557/opl.2011.1363
  19. Tsivadze A.Y., Kulova T.L., Skundin A.M. // Prot. Met. Phys. Chem. Surf. 2013. V. 49. № 2. P. 145. https://doi.org/10.1134/S2070205113020081
  20. Pechen L.S., Makhonina E.V., Medvedeva A.E. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 777. https://doi.org/10.1134/S0036023621050144
  21. Zhou D., Chekannikov A.A., Semenenko D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1488. https://doi.org/10.1134/S0036023622090029
  22. Kwon I.H., Park H.R., Song Y.Y. // Russ. J. Electrochem. 2013. V. 49. № 3. P. 221. https://doi.org/10.1134/S1023193513030099
  23. Shembel’ E.M., Apostolova R.D., Aurbach D. et al. // Russ. J. Appl. Chem. 2014. V. 87. № 9. P. 1260. https://doi.org/10.1134/S1070427214090122
  24. Sun Y.-K., Yoon C.S., Oh I.-H. // Electrochim. Acta. 2003. V. 48. № 5. P. 503. https://doi.org/10.1016/S0013-4686(02)00717-X
  25. Kalyani P., Kalaiselvi N. // Sci. Technol. Adv. Mater. 2005. V. 6. № 6. P. 689. https://doi.org/10.1016/j.stam.2005.06.001
  26. Bianchini M., Fauth F., Hartmann P. et al. // J. Mater. Chem. A. 2020. V. 8. № 4. P. 1808. https://doi.org/10.1039/C9TA12073D
  27. Pouillerie C., Suard E., Delmas C. // J. Solid State Chem. 2001. V. 158. № 2. P. 187. https://doi.org/10.1006/jssc.2001.9092
  28. Hirano A., Kanno R., Kawamoto Y. et al. // Solid State Ionics. 1995. V. 78. № 1–2. P. 123. https://doi.org/10.1016/0167-2738(95)00005-Q
  29. Kalyani P., Kalaiselvi N., Renganathan N.G. et al. // Mater. Res. Bull. 2004. V. 39. № 1. P. 41. https://doi.org/10.1016/j.materresbull.2003.09.021
  30. Wang L., Chen B., Ma J. et al. // Chem. Soc. Rev. 2018. V. 47. № 17. P. 6505. https://doi.org/10.1039/C8CS00322J
  31. Salomatin A.M., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P.1084. https://doi.org/10.1134/S0036023624601144
  32. Medvedeva A.E., Pechen L.S., Makhonina E.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 829. https://doi.org/10.1134/S003602361907012X
  33. Kalaiselvi N., Kumar M.A., Prasath M.S. et al. // Ionics (Kiel). 2002. V. 8. № 5–6. P. 447. https://doi.org/10.1007/BF02376060
  34. Kawai H., Nagata M., Tukamoto H. et al. // J. Mater. Chem. 1998. V. 8. № 4. P. 837. https://doi.org/10.1039/a800604k
  35. Bai Y., Knittlmayer C., Gledhill S. et al. // Ionics (Kiel). 2009. V. 15. № 1. P. 11. https://doi.org/10.1007/s11581-008-0287-z
  36. West A.R., Kawai H., Kageyama H. et al. // J. Mater. Chem. 2001. V. 11. № 6. P. 1662. https://doi.org/10.1039/b101788h
  37. Tan T.Q., Osman R.A.M., Reddy M.V. et al. // EPJ Web. Conf. 2017. V. 162. P. 01053. https://doi.org/10.1051/epjconf/201716201053
  38. Ghiyasiyan-Arani M., Salavati-Niasari M. // J. Phys. Chem. C. 2018. V. 122. № 29. P. 16498. https://doi.org/10.1021/acs.jpcc.8b02617
  39. Taha T.A., Elrabaie S., Attia M.T. // J. Mater. Sci. Mater. Electron. 2018. V. 29. № 21. P. 18493. https://doi.org/10.1007/s10854-018-9965-4
  40. Ivanishchev A.V., Gridina N.A., Rybakov K.S. et al. // J. Electroanal. Chem. 2020. V. 860. P. 113894. https://doi.org/10.1016/j.jelechem.2020.113894

补充文件

附件文件
动作
1. JATS XML
2. Rice. 1. X-ray diffraction patterns of synthesized Li2CoMn3O8 samples: a – ratio Li : Co, Mn = 2.5 : 1, τ = 2.5 h; b – Li : Co, Mn = 2.5 : 1, τ = 1.5 h; c – Li : Co, Mn = 2.23 : 1, τ = 2.5 h; d – Li : Co, Mn = 1.95 : 1, τ = 2.5 h.

下载 (254KB)
3. Fig. 2. SEM images of Li2CoMn3O8 samples at different magnifications: a – ratio Li:Co,Mn = 2.5:1; b – Li:Co,Mn = 2.23:1.

下载 (1MB)
4. Fig. 3. IR spectrum of Li2CoMn3O8 obtained at a ratio of Li:Co,Mn = 2.23:1.

下载 (84KB)
5. Fig. 4. Basic technological scheme for obtaining Li2CoMn3O8.

下载 (281KB)
6. Fig. 5. Complex impedance diagrams of Li2CoMn3O8 samples synthesized at a ratio of Li:Co,Mn = 2.5:1 (a) and 2.23:1 (b).

下载 (175KB)
7. Fig. 6. Equivalent circuit.

下载 (34KB)

版权所有 © Russian Academy of Sciences, 2025