Synthetic aluminosilicates as modifiers for polytetrafluoroethylene

封面

如何引用文章

全文:

详细

Currently, there is an intensive growth in the use of polymer composite materials in all areas of industry, which is due to their unique properties—high strength, lightness, corrosion resistance. In connection with the development of new technologies, there is a need to create a new class of environmentally friendly materials that provide efficient and cost-effective use of raw materials. This paper considers synthetic nanostructured aluminosilicates with a given Si / Al ratio of 1; 3; 5 as modifiers of polytetrafluoroethylene. The phase, elemental composition and thermal behavior of the synthesized compounds are studied. It was found that the use of aluminosilicates contributes to an increase in tensile strength by 40% and relative elongation at break by 70% relative to the original polymer matrix. The introduction of aluminosilicate is accompanied by an increase in wear resistance by 521 times. Thus, a new class of modifiers for polymer composite materials has been synthesized.

全文:

受限制的访问

作者简介

S. Danilova

North-Eastern Federal University named after. M.K. Ammosova

编辑信件的主要联系方式.
Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Yakutsk

P. Tarasova

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Yakutsk

S. Yarusova

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Vladivostok

Iu. Kapitonova

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Yakutsk

A. Spiridonov

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Yakutsk

P. Gordienko

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Vladivostok

A. Okhlopkova

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Yakutsk

E. Papynov

Far Eastern Federal University

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Vladivostok

O. Shichalin

Far Eastern Federal University

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Vladivostok

A. Lembikov

Far Eastern Federal University

Email: dsn.sakhayana@mail.ru
俄罗斯联邦, Vladivostok

参考

  1. Rashid A.B., Haque M., Islam S.M. et al. // Heliyon. 2024. V. 10. P. 24692. https://doi.org/10.1016/j.heliyon.2024.e24692
  2. Khan F., Hossain N., Mim J.J. et al. // J. Eng. Res. 2024. P. 24692. https://doi.org/10.1016/j.jer.2024.02. 24692
  3. Parveez B., Kittur M.I., Badruddin I. et al. // Polymers. 2022. Т. 14. № 22. P. 5007. https://doi.org/10.3390/polym14225007
  4. Deshwal D., Belgamwar S.U., Bekinal S.I. et al. // Polym. Compos. 2024. V. 45. № 16. P. 14475. https://doi.org/10.1002/pc.28802
  5. Xu K., Yang Z., Sun W. et al. // Corros Sci. 2023. V. 218. P. 111141. https://doi.org/10.1016/j.corsci.2023.111141
  6. Лепов В.В., Охлопкова А.А. // ПРАС. 2024. Т. 28. № 4. P. 627.
  7. Khoddamzadeh A., Liu R., Wu X. et al. //Wear. 2009. V. 266. № 7-8. P. 646. https://doi.org/10.1016/j.wear.2008.08.007
  8. Chandran A.J., Rangappa S.M., Suyambulingam I. et al. // J. Vinyl Addit. Technol. 2024. V. 30. № 5. P. 1083. https://doi.org/10.1002/vnl.22106
  9. Spiridonov A.M., Sokolova M.D., Fedoseeva V.I. et al. // Mater. Today Chem. 2024. V. 20. P. 100441. https://doi.org/10.1016/j.mtchem.2021.100441.
  10. Aderikha V.N., Shapovalov V.A. // J. Frict. and Wear. 2011. V. 32. P. 124. https://doi.org/10.3103/S1068366611020024
  11. Kumar B., Fellner J.P. // J. Power Sources. 2003. V. 123. № 2. P. 132. https://doi.org/10.1016/S0378-7753(03)00530-5
  12. Meng Y., Zhang B., Su J. et al. // Fibers and Polym. 2020. V. 21. P. 1126.
  13. Mukhtar N.Z.F., Borhan M.Z., Rusop M. et al. // Adv. Mater. Res. 2014. V. 832. P. 547. https://doi.org/10.4028/www.scientific.net/AMR.832.547
  14. Yu H., Zhu Y., Lu L. et al. // Int. J. Min. Sci. and Tech. 2023. Т. 33. № 6. С. 783.
  15. Wang X., Tong W., Li Y. et al. // Appl. Clay Sci. 2021. V. 215. P. 106330. https://doi.org/10.1016/j.clay.2021.106330
  16. Тарасова П.Н., Капитонова Ю.В., Лазарева Н.Н. и др. // ЮСНВ. 2024. Т. 57. № 5. С. 135.
  17. Нехлюдова Е.А., Иванов Н.П., Ярусова С.Б. и др.// Неорган. материалы. 2023. Т. 59. № 12. С. 1350. https://doi.org/10.31857/S0002337X23120072
  18. Ярусова С.Б., Гордиенко П.С., Панасенко А.Е. и др. // Журн. физ. химии. 2019. Т. 93. № 2. С. 278. https://doi.org/10.1134/S0044453719020341
  19. Yan Y., Jia Z., Yang Y. // Procedia Environ Sci. 2011. V. 10. P. 929. https://doi.org/10.1016/j.proenv.2011.09.149
  20. Gordienko P.S., Yarusova S.B., Shabalin I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1393. https://doi.org/10.1134/S0036023622090042
  21. Kumar A., Chakrabarti A., Shekhawat M. S. et al. // JETIR. 2019. V. 6. № 2. P. 546.
  22. Dehghani, P., Soleimani F. // Adv. Ceram. Prog. 2021. V. 7. № 2. P. 16. https://doi.org/10.30501/acp.2021.286931.1060
  23. Shirvanimoghaddam K., Balaji K.V., Yadav R. et al. // Compos. Part B: Eng. 2021. V. 223. P. 109121. https://doi.org/10.1016/j.compositesb.2021.109121
  24. Heidari M., Labousse M., Leibler L. 2024. https://doi.org/10.48550/arXiv.2410.18093
  25. Xu J., Reiter G., Alamo R.G. // Cryst. 2021. V. 11. № 3. P. 304. https://doi.org/10.3390/cryst11030304
  26. Охлопкова А.А., Адрианова О.А., Попов С.Н. и др. Модификация полимеров ультрадисперсными соединениями. Якутск: ЯФ Изд-ва СО РАН, 2003. 224 с.
  27. Слепцова С.А., Кириллина Ю.В., Лазарева Н.Н. и др. // Вестник СВФУ. 2015. Т. 50. № 6. С. 95.
  28. Игнатьева Л.Н., Бузник В.М. // Рос. хим. журн. 2008. Т. 52. № 3. С. 139.
  29. Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии. М.: Высшая школа, 1971. 237 с.
  30. Sleptsova S.A., Okhlopkova A.A., Kapitonova Iu.V. et al. // J. Frict. Wear. 2016. V. 37. № 2. P. 129. https://doi.org/10.3103/S106836661602015X.
  31. Kapitonova I.V., Tarasova P.N., Okhlopkova A.A. et al. // Tribology Online. 2023. V. 18. № 2. P. 10. https://doi.org/10.2474/trol.18.10

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Thermograms of synthesized aluminosilicates.

下载 (163KB)
3. Fig. 2. X-ray diffraction patterns of sodium aluminosilicates after firing at 900°C.

下载 (97KB)
4. Fig. 3. Adsorption-desorption isotherms (a) and porosimetry (b) of sodium aluminosilicates after calcination.

下载 (162KB)
5. Fig. 4. Dependence of tensile strength (a), relative elongation at break (b), elastic modulus (c) and compressive stress at a relative deformation of 10% (d) on the filler content.

下载 (336KB)
6. Fig. 5. Micrographs of the supramolecular structure of PTFE (a) and composites containing 2 wt.% sodium aluminosilicates (scale ×150): b – Na2Al2Si2O8, c – Na2Al2Si6O16, d – Na2Al2Si10O24.

下载 (625KB)
7. Fig. 6. Dependence of wear rate (a) and friction coefficient (b) on filler content.

下载 (193KB)
8. Fig. 7. IR spectra of samples with 2 wt.% filler content before (a) and after (b) friction.

下载 (206KB)
9. Fig. 8. Morphology of the friction surface of PTFE (a) and composites containing 2 wt.% sodium aluminosilicate with different Si/Al ratios: b – Na2Al2Si2O8, c – Na2Al2Si6O16, d – Na2Al2Si10O24.

下载 (521KB)

版权所有 © Russian Academy of Sciences, 2025