Application of a three-component model to describe non-isothermal pyrolysis of rice husk
- Autores: Zavarukhin S.G.1,2, Korkina A.K.2, Yakovlev V.A.1
-
Afiliações:
- Boreskov Institute of Catalysis SB RAS
- Novosibirsk State Technical University
- Edição: Volume 66, Nº 1 (2025)
- Páginas: 39-47
- Seção: ARTICLES
- URL: https://j-morphology.com/0453-8811/article/view/687459
- DOI: https://doi.org/10.31857/S0453881125010049
- EDN: https://elibrary.ru/EJCPAS
- ID: 687459
Citar
Resumo
The experimental data on rice husk pyrolysis obtained by thermogravimetric method in non-isothermal mode were processed based on three-component kinetic model. According to the model, biomass is represented by the sum of three components — hemicellulose, cellulose and lignin. Pyrolysis of each component proceeds by independent irreversible first-order reaction. To determine the model parameters, the experimental data processing technique based on the difference in temperature ranges of hemicellulose, cellulose and lignin pyrolysis, improved in this work, was used. The activation energies of rice husk component pyrolysis were as follows: 21.3 kJ/mol for lignin, 110 kJ/mol for cellulose, and 38 kJ/mol for hemicellulose. The discrepancy between the experimental and calculated data on the sample mass was less than 1%. For comparison, the experimental data were processed using the one-component Ginstling–Brownestein model using the Coats–Redfern method.
Texto integral

Sobre autores
S. Zavarukhin
Boreskov Institute of Catalysis SB RAS; Novosibirsk State Technical University
Autor responsável pela correspondência
Email: zsg@catalysis.ru
Rússia, Akad. Lavrentieva ave., 5, Novosibirsk, 630090; K. Marksa ave., 20, Novosibirsk, 630073
A. Korkina
Novosibirsk State Technical University
Email: zsg@catalysis.ru
Rússia, K. Marksa ave., 20, Novosibirsk, 630073
V. Yakovlev
Boreskov Institute of Catalysis SB RAS
Email: zsg@catalysis.ru
Rússia, Akad. Lavrentieva ave., 5, Novosibirsk, 630090
Bibliografia
- Гребенкина А.В., Шишова Н.В., Литвинова Т.А., Косулина Т.П. // Научные труды КубГТУ. 2017. № 7. С. 177.
- Demirbas A., Arin D. // Energy Sources. 2002. V. 5. P. 471.
- Коробочкин В.В., Нгуен М.Х., Усольцева Н.В., Нгуен В.Т. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. Т. 328. № 5. C. 6.
- Di Blasi C. // Prog. Energy Combust. Sci. 2008. V. 34. P. 47.
- Sharma A., Pareek V., Zhang D. // Renew. Sustain. Energy Rev. 2015. V. 50. P. 1081.
- Papari S., Hawboldt K. // Renew. Sustain.e Energy Rev. 2015. V. 52. P. 1580.
- Caballero J.A., Conesa J.A., Font R., Marcilla A. // J. Anal. Appl. Pyrol. 1997. V. 42. P. 159.
- Orfao J.J.M., Antunes F.J.A., Figueiredo J.L. // Fuel. 1999. V. 78. P. 349.
- Helsen L., Van den Bulck E. // J. Anal. Appl. Pyrol. 2000. V. 53. P. 51.
- Sorum L., Gronli M.G., Hustad J.E. // Fuel. 2001. V. 80. P. 1217.
- Garsia-Perez M., Chaala A., Yang J., Roy C. // Fuel. 2001. V. 80. P. 1245.
- Gronli M.G., Varhegyi G., Di Blasi C. // Ind. Eng. Chem. Res. 2002. V. 41. P. 4201.
- Vamvuka D., Karakas E., Kastanaki E., Grammelis P. // Fuel. 2003. V. 82. P. 1949.
- Заварухин С.Г., Яковлев В.А. // Кинетика и катализ. 2021. Т. 62. № 4. С. 647.
- Teng H., Lin H.C., Ho J.A. // Ind. Eng. Chem. Res. 1997. V. 36. P. 3974.
- Teng H., Wei Y.C. // Ind. Eng. Chem. Res. 1998. V. 37. P. 3806.
- Radmanesh R., Courbariaux Y., Chaouki J., Guy C. // Fuel. 2006. V. 85. P. 1211.
- Vlaev L.T., Markovska I.G., Lyubchev L.A. // Thermochim. Acta. 2003. V. 406. P. 1.
- Guo J., Lua A.C. // J. Therm. Anal. Calorim. 2000. V. 59. P. 763.
- Rao T.R., Sharma A. // Energy. 1998. V. 23. P. 973.
- Sharma A., Rao T.R. // Biores. Technol. 1999. V. 67. P. 53.
- Lim A.C.R., Chin B.L.F., Jawad Z.A., Hii K.L. // Proc. Eng. 2016. V. 148. P. 1247.
- Табакаев Р.Б., Алтынбаева Д.Б., Ибраева К.Т., Заворин А.С. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331. № 12. С. 117.
- Фетисова О.Ю., Микова Н.М., Таран О.П. // Кинетика и катализ. 2020. Т. 61. № 6. С. 804.
Arquivos suplementares
