Development of the Ge-MDST instrument structure with an induced p-type channel
- Autores: Alyabina N.A.1, Arkhipova E.A.2, Buzynin Y.N.1,2, Denisov S.A.1, Zdoroveishchev A.V.1, Titova A.M.1, Chalkov V.Y.1, Shengurov V.G.1
-
Afiliações:
- Nizhegorodsky State University named after N.I. Lobachevsky
- Institute of Microstructure Physics of the Russian Academy of Sciences
- Edição: Volume 53, Nº 3 (2024)
- Páginas: 259-264
- Seção: ПРИБОРЫ
- URL: https://j-morphology.com/0544-1269/article/view/655226
- DOI: https://doi.org/10.31857/S0544126924030077
- ID: 655226
Citar
Resumo
The conditions for the growth of n-type Ge conduction layers by the HW CVD method with the parameters required to create a Ge-TIR transistor with an induced p-type channel are determined. The conditions of deposition by electron beam deposition and subsequent annealing of layers of a high-k dielectric ZrO2:Y2O3 are optimized, allowing to achieve a leakage current of 5 × 10–6 A/cm2. For the developed instrument structure, some parameters of the Ge-TIR transistor were calculated, such as the channel length, the maximum voltage between the drain and the source, and the breakdown voltage.
Palavras-chave
Sobre autores
N. Alyabina
Nizhegorodsky State University named after N.I. Lobachevsky
Email: asya_titova95@mail.ru
Rússia, Nizhny Novgorod
E. Arkhipova
Institute of Microstructure Physics of the Russian Academy of Sciences
Email: asya_titova95@mail.ru
Rússia, Afonino
Yu. Buzynin
Nizhegorodsky State University named after N.I. Lobachevsky; Institute of Microstructure Physics of the Russian Academy of Sciences
Email: asya_titova95@mail.ru
Rússia, Nizhny Novgorod; Afonino
S. Denisov
Nizhegorodsky State University named after N.I. Lobachevsky
Email: asya_titova95@mail.ru
Rússia, Nizhny Novgorod
A. Zdoroveishchev
Nizhegorodsky State University named after N.I. Lobachevsky
Email: asya_titova95@mail.ru
Rússia, Nizhny Novgorod
A. Titova
Nizhegorodsky State University named after N.I. Lobachevsky
Autor responsável pela correspondência
Email: asya_titova95@mail.ru
Rússia, Nizhny Novgorod
V. Chalkov
Nizhegorodsky State University named after N.I. Lobachevsky
Email: asya_titova95@mail.ru
Rússia, Nizhny Novgorod
V. Shengurov
Nizhegorodsky State University named after N.I. Lobachevsky
Email: shengurov@phys.unn.ru
Rússia, Nizhny Novgorod
Bibliografia
- Neizvestny I.M. Germanium field-effect transistor (Ge MOSFET) // Bulletin of SibGUTI. 2009. No. 3. Р. 5—9.
- Goley P.S., Hudait M.K. Germanium Based Field-Effect Transistor: Challenges and Opportunities. Materials 2014. V.7. P. 2301—2339. doi: 10.3390/ma7032301.
- Yi S.H., Chang-Liao K.S., Wu T.Y., Hsu C.W., Huang J. High performance Ge pMOSFETs with HfO2/Hf-Cap/GeOx gate stack and suitable post metal annealing treatments // IEEE Trans Electron Devices. 2017. V. 37. No. 7. P. 544—547. doi: 10.1109/LED.2017.2686400.
- Liu H., Han G., Liu Y., Hao Y. High Mobility Ge pMOSFETs with ZrO2 Dielectric: Impacts of Post Annealing Nanoscale Research Letters 2019. V. 14. P. 202. DOI: 10.1186 / s11671-019-3037-4.
- Shin Y., Chung W., Seo Y., Lee C.H., Sohn D.K., Cho B.J. Demonstration of Ge pMOSFETs with 6 Å EOT using TaN/ZrO2/Zr-cap/n-Ge(100) gate stack fabricated by novel vacuum annealing and in-situ metal capping method // IEEE Symposium on VLSI Technology. 2014. P. 82—83. doi: 10.1109/VLSIT.2014.6894377.
- Lin C.M., Chang H.C., Chen Y.T., Wong I.H., Lan H.S., Luo S.J., Lin J.Y., Tseng Y.J., Liu C.W., Hu C., Yang F.L. Interfacial layer-free ZrO2 on Ge with 0.39-nm EOT, κ ~ 43, ~2 × 10–3 A/cm2 gate leakage, SS = 85 mV/dec, Ion/Ioff = 6 × 105, and high strain response. Electron Devices Meeting (IEDM) // 2012 IEEE International. 2012. P. 23.2.1—23.2.4.
- Henkel C., Abermann S., Bethge O., Pozzovivo G., Klang P., Reiche M., Bertagnolli E. Ge p-MOSFETs with scaled ALD La2O3/ZrO2 gate dielectrics // IEEE Trans Electron Devices. 2010. V.57. P. 3295—3302. doi: 10.1109/TED.2010.2081366.
- Seo Y., Lee T.I., Yoon C.M., Park B.E., Hwang W.S., Kim H. The impact of an ultrathin Y2O3 layer on GeO2 passivation in Ge MOS gate stacks // IEEE Trans Electron Devices. 2017. V. 64. P. 3303—3307.
- Kamata Y. High-k/Ge MOSFETs for Future Nanoelectronics // Materials today. 2008. V. 11. Nos. 1-2. P. 31—38. doi: 10.1016/S1369-7021 (07)70350-4.
- Wu N., Zhang Q., Chan D.S.H., Balasubramanian N., Zhu C. Gate-First germanium nMOSFET with CVD HfO2 gate dielectric and silicon surface passivation // IEEE Electron Device Letters. 2006. V. 27. No. 6. P. 479—491. doi: 10.1109/LED.2006.874209.
- Kamata Y. High-k/Ge MOSFETs for future nanoelectronics // Materials today. 2008. V. 11. No. 1. P. 30—38. doi: 10.1016/S1369-7021 (07)70350-4.
- Buzynin A.N., Osiko V.V., Buzynin Y.N. Fianite: a multipurpose electronics material // Bulletin of the Russian Academy of Sciences: Physics. 2010. V. 74. No. 7. P. 1027—1033. doi: 10.3103/S1062873810070300.
- Buzynin A.N., Buzynin Y.N., Panov V.A. Applications of Fianite in Electronics. Advances in OptoElectronics V. 2012. P. 23. doi: 10.1155/2012/907560.
- Buzynin Y., Shengurov V., Zvonkov B., Buzynin A., Denisov S., Baidus N., Drozdov M., Pavlov D., Yunin P. GaAs/Ge/Si Epitaxial Substrates: Development and Characteristics. Green and Sustainable Chemistry. 2017. V. 7. No. 1. P. 015304. doi: 10.1063/1.4974498.
- Titova A.M., Denisov S.A., Chalkov V.Yu., Alyabina N.A., Zdoroveishchev A.V., Shengurov V.G. Distribution of charge carrier concentrations in epitaxial layers of Ge and GeSn grown on n+-Si(001) substrates // Physics and Technology of semiconductors. 2022. V. 56. No. 9. Р. 339—343. doi: 10.21883/FTP.2022.09.53401.36.
- Bean J.C., Leamy H.J., Poate J.M., Rozgonyi G.A., Sheng T.T., Williams J.S., Celler G.K. Epitaxial laser crystallization of thin‐film amorphous silicon // Applied Physics Letters. 1978. V. 33. P. 227—230. doi: 10.1063/1.90324.
- Nikiforov A.I., Kanter B.Z., Stenin S.I. Obtaining multilayer silicon structures by molecular beam epitaxy // Electronic Industry. 1989. No. 6. Р. 3—5.
Arquivos suplementares
