in control; however, by the end of the third week, i.e. by the beginning of juvenile age, it decreased and was significantly lower than the control value.

Conclusions. In the respiratory portions of the solitary nucleus in control rats, a gradual decrease in GAT_1 expression occurs in the first three weeks of postnatal development. Deficiency of serotonin in the prenatal period leads to impaired expression of the GAT_1 transporter in the early postnatal period. The revealed deviations can lead to a change in the transmission of GABA, which, in turn, can cause an imbalance of inhibitory

and excitatory effects in the respiratory center in the early postnatal period and, as a result, to be a basis for the development of respiratory dysfunctions at early age.

Key words: solitary nucleus, serotonin, GAT-1 GABA transporter, early postnatal period

Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, RAS, 6 Makarova Emb., St. Petersburg 199034; Department of Histology and Embryology n.a. prof. A.G.Knorre, St. Petersburg State Pediatric Medical University, 2 Litovskaya St., St. Petersburg 194100

© Коллектив авторов, 2019 УДК 616.831-005.4

Д.Б. Авдеев, С.С. Степанов, А.В. Горбунова, В.А. Акулинин, А.Ю. Шоронова

ИММУНОГИСТОХИМИЧЕСКИЕ ПРОЯВЛЕНИЯ АПОПТОЗА И НЕЙРОПЛАСТИЧНОСТИ КОРЫ ГОЛОВНОГО МОЗГА БЕЛЫХ КРЫС ПОСЛЕ ОККЛЮЗИИ ОБЩИХ СОННЫХ АРТЕРИЙ

Кафедра гистологии, цитологии и эмбриологии (зав. — д-р мед. наук В. А. Акулинин), ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России

Цель — изучение активности белков апоптоза (bcl-2, p53, каспазы-3) и нейропластичности (p38, MAP-2) сенсомоторной коры (CMK) головного мозга белых крыс в норме и различные сроки после 20-минутной окклюзии общих сонных артерий (OOCA).

Материал и методы. Использованы методы световой микроскопии (окраска гематоксилином — эозином), иммуногистохимии и морфометрии. Материал для исследования: контрольная группа — ложнооперированные животные (n=5), основная группа — животные через 1, 3, 7, 14 и 30 сут после ООСА (n=25).

Результаты. Показано, что после ООСА на фоне необратимой деструкции части нейронов СМК (слой III — 21,5%, слой V — 19,0%) происходит реорганизация отростков (МАР-2) и синапсов (р38) сохранившихся нейронов. Относительное содержание меченых антител к р38 и каспазе-3, локализованных в синаптических терминалях, сначала (на 1-е и 3-и сутки) уменьшается, а затем (на 7-е сутки) восстанавливается. Наиболее выраженные изменения каспазы-3 в динамике постишемического периода отмечены через 7, 14 и 30 сут, когда ее содержание превышает таковое р38.

Выводы. Постишемическая компенсаторная реорганизация системы коммуникации нейронов (отростки, синапсы) происходит на фоне высокого содержания каспазы-3 в аксонах. При этом проявлений апоптоза (активации каспазы-3 в перикарионе) не выявлено. Каспазу-3 необходимо рассматривать в аспекте ее плейотропии, участия в адаптационных и восстановительных процессах — нейропластичности.

Ключевые слова: острая ишемия, неокортекс, каспаза-3, p53, bcl-2, p38, MAP-2

В ведение. Известно, что после острой ишемии запускаются механизмы повреждения нервной ткани путем некроза и апоптоза, а также нейропластичность [2, 12, 13]. Необратимые повреждения нейронов при острой ишемии инициируются через активацию с-Jun N-terminal kinase (JNK). Затем следует апоптоз или вторичный (отдаленный) некроз [10]. При этом активную роль играет каспаза-3, которая обладает как про-, так и антиапоптотическим свойством [5, 6]. Нейропротекторная и нейропластическая функции каспазы-3 могут быть активированы Ca²⁺-зависимым путем, но точные механизмы пока неизвестны [7–9]. Вероятно, апоптотические протеиназы имеют функции, непосредственно связанные с нейропластичностью. Каспазе-3 присуща плейотропия или мультимодальность, что реализуется в вовлечении этого фермента во множество различных прямо противоположных функций. При развитии церебральной патологии этот фермент опосредует как гибель нервных клеток, так и компенсаторные процессы,

Сведения об авторах:

Авдеев Дмитрий Борисович (e-mail: avdeev86@inbox.ru), Степанов Сергей Степанович (e-mail: serg_stepanov@mail.ru), Акулинин Виктор Александрович (e-mail: akulinin@omsk-osma.ru), Шоронова Анастасия Юрьевна (e-mail: nastasya1994@mail.ru), кафедра гистологии, цитологии и эмбриологии, Горбунова Анна Владимировна (e-mail: double_energy@mail.ru), кафедра онкологии, лучевой терапии ДПО, ФГБОУ ВО «Омский государственный медицинский университет» Минздрава РФ, 644099, г. Омск, ул. Ленина, 12 необходимые для выживания нейронов и нормального функционирования мозга в целом [7, 8]. Морфологических исследований нервной ткани в этом направлении мало.

Ключевыми структурами, связанными с активацией механизмов нейропластичности, являются межнейронные синапсы и нервные отростки [3, 4]. Современные методы иммуногистохимии позволяют выявить эти структуры даже на светооптическом уровне, например, с помощью верификации синаптофизина (терминали — пресинаптическая зона) и МАР-2 (дендриты — постсинаптическая зона) [1, 4]. Ранее мы продемонстрировали ультраструктурные и иммуногистохимические признаки вероятной связи каспазы-3 и синаптической пластичности в гиппокампе белых крыс, перенесших ООСА [1]. Данных о подобном исследовании коры головного мозга крыс в литературе мы не нашли.

Целью настоящего исследования явилось иммуногистохимическое изучение сенсомоторной коры (СМК) головного мозга белых крыс в контроле и после 20-минутной ООСА для выявления связи нейропластичности и активности каспазы-3, как одного из ключевых ферментов апоптоза.

Материал и методы. Эксперименты проводили в соответствии с «Правилами проведения работ с использованием экспериментальных животных» (приложение к приказу Министерства здравоохранения СССР от 12.08.1977 г. № 755) и с рекомендациями Международного комитета по науке о лабораторных животных, поддержанных ВОЗ, директивой Европейского Парламента № 2010/63/EU от 22.09.2010 г. «О защите животных, используемых для научных целей». На проведение исследования было получено разрешение этического комитета ФГБОУ ВО «Омский государственный медицинский университет» (протокол № 83 от 14 октября 2016 г).

Работа выполнена на 30 самцах белых крыс Wistar массой 180–200 г, которых содержали в конвенциональном виварии. Животных выводили из эксперимента путем декапитации.

20-минутную ООСА (2-сосудистая модель неполной глобальной ишемии без гипотонии) воспроизводили на фоне премедикации (сульфат атропина 0,1 мг/кг подкожно) и общей анестезии (Zoletil 100 10 мг/кг). Взятие материала проводили через 1 (n=5), 3 (n=5), 7 (n=5), 14 (n=5) и 30 (n=5) сут после ООСА. Группой сравнения служили ложнооперированные (без окклюзии артерий) животные того же возраста через 3 сут после ложной операции (n=5). Головной мозг фиксировали перфузией 4% раствора параформальдегида на 0,1М фосфатном буфере (pH 7,4) через восходящую часть дуги аорты. Серийные фронтальные срезы (толщина 4 мкм) сенсомоторной коры [11] окрашивали гематоксилином — эозином.

Для иммуногистохимического исследования использовали моноклональные мышиные антитела к Caspase-3 (СРР32 — активная форма; код NCL-СРР32, клон JHM62), bcl-2 (код PA0117, клон 3.1), p38 (код ORG-8848, клон 27G12), p53 (код PA0057, клон DO-7) (Лейка Биосистемс Ньюкасл Лтд, Соединенное Королевство) и поликлональные кроличьи антитела к MAP2 (ab32454) (Abcam, CША).

После реакции с первичными антителами срезы последовательно инкубировали с вторичными антителами, затем с хромогеном DAB (3,3'-диаминобензидин), докрашивали гематоксилином и заключали в полистирол. На микроскопе Leica DM 1000 делали цифровые микрофотографии (по 80 полей зрения с каждого срока), изображение сохраняли в файлах с расширением tiff (2592×1944 пикселей). Для достижения максимальной контрастности и четкости мелких отростков нейронов в Photoshop CC проводили коррекцию изображения с помощью фильтра Camera Raw (контрастность, баланс белого, четкость). Дальнейшее морфометрическое исследование осуществляли на масках 8-битовых черно-белых изображений (об. 40) с использованием программы Image J 1.52. Определяли общую численную плотность нейронов, относительную площадь р38- и каспаза-3-позитивного материала. Проверку статистических гипотез осуществляли непараметрическими критериями Манна-Уитни, ANOVA (однофакторный дисперсионный анализ) Краскела-Уоллиса (StatSoft Statistica 8.0). Результаты представлены как медиана (нижний и верхний квартили). В ходе проведения статистического анализа нулевая гипотеза отвергалась при р≤0,05.

Результаты исследования. Гистопатологические изменения в СМК через 1 сут после ООСА показали, что патогномоничным и доминирующим маркером последствий ишемии—реперфузии является появление нейронов с ишемическим повреждением (тёмноокрашенных клеток с гиперхроматозом ядер), находящихся на разных стадиях патологического процесса (несморщенные и пикноморфные без и с гомогенизацией хроматина), которые длительно сохраняются в постишемическом периоде (*puc. 1, a, б*).

Содержание нормохромных нейронов (их численная плотность) через 3 сут после ООСА статистически значимо уменьшалось в слое III в 1,6-7,9 раза, а в слое V — в 2,8–3,9 раза (р<0,05). В отдаленном периоде (на 30-е сутки) отмечались небольшие скопления темных сморщенных нейронов. Это свидетельствует о том, что после 20-минутной ООСА бо́льшая часть гиперхромных ишемических нейронов не подвергаются необратимой деструкции и фагоцитозу, а сохраняются в течение всего периода наблюдения. Через 30 сут в слое III дефицит общей численной плотности нейронов составил 21,5%, а в слое V — 19,0%. Сохранившиеся нормохромные нейроны имели гипертрофированные тела. Вероятно, именно за счет подобных нейронов осуществляется реорганизация нейронных сетей в СМК.

По данным иммуногистохимического исследования, после ООСА белки регуляции апоптоза (p53, bcl-2) выявляются в единичных нейронах СМК. Каспаза-3 имеет высокую активность только в аксонах и синаптических терминалях, а в перикарионах не выявляется. Мы полагаем, что при 20-минутной ООСА апоптоз не имеет существенного значения для элиминации поврежденных нейронов. Каспазу-3 в данном случае целесообразно рассматривать в аспекте ее плейотропии и участия в механизмах нейропластичности.

Исследование также показало, что локализация каспазы-3 в СМК соответствует таковой p38 — в стратегических зонах реализации механизмов синаптической пластичности (терминали аксошипиковых, аксодендритических и аксосоматических синапсов). Подобная локализация наблюдается в течение всего периода наблюдения, изменяется только плотность распределения маркера каспазы-3 и p38 между дендритами (MAP-2) (*puc. 2, а–6; 3, а–2*).

Математическая обработка полученных данных показала, что в постишемическом периоде происходит статистически значимое (ANOVA Краскела-Уоллиса, p<0,05) изменение относительной площади (ОП) отростков нейронов (МАР-2-позитивные структуры) в поле зрения. Установлено, что в молекулярном слое СМК у животных контрольной группы ОП отростков в нейропиле составляет 28,6 (24,4-32,5)%. У животных основной группы ОП сначала (1-3 сут) снижается до 21,1 (13,5-23,2)%, затем к 7-м суткам восстанавливается до уровня контроля -25,6 (21,5–29,9)%, а в отдаленном периоде (14 и 30 сут) превышает контрольное значение — 34,8 (28,5-36,3) и 39,7 (31,4-46,2)% (критерий Манна—Уитни, p<0,05). Это свидетельствует о небольшом, но значимом изменении содержания белка МАР-2, связанном с цитоскелетом нейронов, в ответ на ООСА. Уменьшение содержания этого белка через 1 и 3 сут, вероятно, обусловлено деструкцией цитоскелета. Увеличение содержания МАР-2 в отдаленном периоде можно рассматривать как одно из проявлений нейропластичности — компенсаторной реорганизации отростков сохранившихся нейронов путем гипертрофии (утолщение, удлинение, разветвление).

На фоне постишемической реорганизации дендритов и аксонов в СМК происходит изменение ОП меток р38 и каспазы-3 (*таблица*). В остром периоде (1 и 3 сут) ОП меток р38 и каспазы-3 снижается, вероятно, в результате разрушения синаптических терминалей. Затем, на 7-е сутки этот показатель для р38 восстанавливается до контрольного уровня, а для каспазы-3 статистически значимо превышает контрольное значение. В отдаленном периоде (14 и 30 сут) ОП каспазы-3 превышает как контрольное значение, так и ОП р38 (см. таблицу).

Обсуждение полученных данных. Таким образом, компенсаторная реорганизация отростков нейронов (МАР-2) и синапсов (р38) через 7, 14 и 30 сут после ООСА происходит на фоне высокого содержания каспазы-3 в аксонных терминалях. В норме относительная пло-

Рис. 1. Микрофотографии сенсомоторной коры головного мозга белых крыс через 1 сут после ООСА.

щадь меток каспазы-3 в СМК статистически значимо не отличается от таковой p38.

а — обзорное поле зрения всех слоев; б — темный нейрон (стрелка). Окраска гематоксилином — эозином. Ув.: а — 10;
б — 100

Рис. 2. Микрофотографии сенсомоторной коры головного мозга белых крыс через 1 сут после ООСА.

а — локализация МАР-2 в цитоскелете тел и отростков нейронов (слой V); б — локализация p38 в синаптических терминалях на телах нейронов (белая стрелка) и в окружающем нейропиле (черные стрелки); в — локализация каспазы-3 в синаптических терминалях на телах нейронов (белая стрелка) и в окружающем нейропиле (черные стрелки). Иммуногистохимическая реакция на МАР-2 (а), p38 (б), каспазу-3 (в) (хромоген DAB). Ув. 100

Относительная площадь (%) меток синаптос	ризина и каспазы-З	3 в сенсомоторной	і коре белых крыс
в норме и после окклюзии (общих сонных арте	рий, Me (Ql—Qu)

Course a	Белки		
трушы	Синаптофизин	Каспаза-3	
Ложнооперированные, n=5	19,1 (13,9–25,2)	22,8 (17,5–24,0)	
1 и 3 сут, n=10	11,4 (7,4–16,6) ¹⁾ *	12,6 (10,5–15,5) ^{1)*, 2)*}	
7 сут, n=5	18,9 (13,7–25,0) ²)*	31,1 (23,3–34,4) ^{1)*} , ^{2)*} , ^{3)*}	
14 сут, n=5	16,8 (11,9–22,7)	35,2 (26,5–37,3) ¹⁾ * , ³)*	
30 сут, n=5	21,2 (15,7–27,5)	30,9 (20,7–43,6) ¹⁾ * , ³)*	

¹⁾* Различия статистически значимы по сравнению с контролем, ²⁾* с предыдущим сроком и ³⁾* между белками при р≤0,05 (критерий Манна— Уитни).

Использованные нами моноклональные мышиные антитела (СРРЗ2) выявляют активную форму caspase-3 — члена семейства аспартатспецифических цистеиновых протеаз, одного из основных медиаторов клеточного апоптоза. Ее активация происходит на ранних стадиях апоптоза путем самопротеолиза и/или за счет воздействия других протеаз. Однако в последнее время каспаза-3 рассматривается не только как ключевой фермент конечной стадии апоптоза, но и как важный химический компонент нейропластичности [5, 7, 8]. Кроме того, локализация неапоптотической формы этой протеазы совпадает с местами максимального проявления процессов нейропластичности — аксонами и синаптическими терминалями [1, 5, 6].

Наиболее подходящей моделью острой ишемии для проверки этого положения является 20-минутная окклюзия общих сонных артерий, после которой, как правило, возникают умеренные диффузные изменения нервной ткани без очагов некроза [2-4]. С помощью иммуногистохимии нам не удалось показать активацию белков p53 и bcl-2. Кроме того, каспаза-3 в норме и после ООСА была выявлена только в аксонах и синаптических терминалях, а в телах нейронов этот белок отсутствовал. Наличие артефактов окраски нервной ткани в нашем исследовании исключается в силу высокой специфичности меток (окраска только терминалей и аксонов). Все это свидетельствует об отсутствии иммуногистохимических проявлений апоптоза в телах нейронов. При этом в постишемическом периоде количество синаптофизина восстанавливается на фоне высокого относительно контроля содержания каспазы-3 в синаптических терминалях, т.е., по нашим данным, для нейронов СМК при использованной модели ООСА весьма вероят-

а — локализация МАР-2 в нейропиле молекулярного слоя; б — локализация МАР-2 в телах и дендритах нейронов слоя III;

в — локализация p38 в синаптических терминалях на телах нейронов и в нейропиле; г — локализация и высокая плотность каспазы-3 в синаптических терминалях на телах нейронов и в окружающем нейропиле. Иммуногистохимическая реакция на MAP-2 (a, б), p38 (в), каспазу-3 (г) (хромоген DAB). Ув. 100

но проявление неапоптотических (плейотропных) нейропротекторных и нейропластических эффектов каспазы-3 без каких-либо признаков ее активации в перикарионе, что необходимо для завершения конечной стадии апоптоза.

Заключение. Многообразие функций каспазы-З широко обсуждается [5,6], но абсолютное подтверждение ее участия в нейропластичности требует дальнейших молекулярных исследований лигандов этого фермента.

Данная работа выполнена при поддержке Фонда содействия инновациям по программе «УМНИК» № 14 от 15.12.2017 г. и внутреннего гранта ФГБОУ ВО «Омского государственного медицинского университета» № 574 от 24.11.2017 г.

Вклад авторов:

- Концепция и дизайн исследования: Д. Б. А., С. С. С., А. В. Г., В. А. А., А. Ю. Ш.
- Сбор и обработка материала: Д. Б. А., С. С. С., А. В. Г., В. А. А., А. Ю. Ш.
- Статистическая обработка данных: Д. Б. А., С. С. С., А. В. Г., В. А. А., А. Ю. Ш.
- Анализ и интерпретация данных: Д. Б. А., С. С. С., А. В. Г., В. А. А., А. Ю. Ш.
- Написание текста: Д. Б. А., С. С. С., А. В. Г., В. А. А., А. Ю. Ш.

Авторы сообщают об отсутствии в статье конфликта интересов.

ЛИТЕРАТУРА

- Авдеев Д.Б., Акулинин В.А., Степанов А.С., Горбунова А.В., Степанов С.С. Плейотропные ферменты апоптоза и синаптическая пластичность гиппокампа белых крыс после окклюзии общих сонных артерий // Сибирский медицинский журнал. 2018. Т. 33, № 3. С. 102–110 [Avdeev D. B., Akulinin V.A., Stepanov A.S., Gorbunova A. V., Stepanov S.S. Pleiotropic enzymes of apoptosis and synaptic plasticity in albino rat hippocampus after occlusion of common carotid arteries // Sibirskii meditsinskii zhurnal. 2018. Vol. 33, № 3. Р. 102–110. In Russ.]. doi: https://doi.org/10.29001/2073-8552-2018-33-3-102-110
- 2. Наумов Н.Г., Дробленков А.В. Реактивные изменения клеток паранигрального ядра среднего мозга в условиях переднемозговой ишемии у крыс // Морфология. 2014. Т. 145, вып. 3. С. 137–138 [Naumov N.G., Droblenkov A.V. The reactive changes of the cells of mesencephalic paranigral nucleus after prosencephalic ishemia in rats // Morphology. 2014. Vol. 145, № 3. Р. 137–138. In Russ.].
- 3. Степанов А. С., Авдеев Д.Б., Акулинин В. А., Степанов С. С. Структурно-функциональные изменения нейронов неокортекса белых крыс после 20-минутной окклюзии общих сонных артерий // Патологическая физиология и экспериментальная терапия. 2018. Т. 62, № 2. С. 30–38 [Stepanov A. S., Avdeev D. B., Akulinin V.A., Stepanov S. S. Structural and functional changes in neocortical neurons of white rats following a 20-minute occlusion of common carotid arteries // Patologicheskaya fiziologiya i eksperimental'naya terapiya. 2018. Vol. 62, № 2. P. 30–38. In Russ.]. doi: https://doi. org/10.25557/0031-2991.2018.02.30-38
- 4. Степанов А.С., Акулинин В.А., Степанов С.С., Авдеев Д.Б., Горбунова А.В. Коммуникация нейронов поля САЗ гиппокампа головного мозга белых крыс после острой ишемии // Общая реаниматология. 2018. Т. 14, № 5. С. 38–49 [Stepanov A.S., Akulinin V.A., Stepanov S.S., Avdeev D.B., Gorbunova A.V. Neurons Communication in the Hippocampus of Field CA3 of the White Rat Brain after Acute ischemia // Obshchaya reanimatologiya. 2018. Vol. 14, № 5. Р. 38–49. In Russ.]. doi: https://doi.org/10.15360/1813-9779-2018-5-38-49
- Яковлев А.А., Гуляева Н.В. Плейотропные функции протеиназ мозга: методические подходы к исследованию и поиск субстратов каспазы // Биохимия. 2011. Т. 76, № 10. С. 1325–1334 [Yakovlev A.A., Gulyaeva N.V. Pleiotropic functions of brain proteinases: Methodological considerations and search for caspase substrates // Biohimiya. 2011. Vol. 76, № 10. Р. 1325–1334. In Russ.]. doi: https://doi.org/10.1134/ s0006297911100014
- Яковлев А.А., Гуляева Н.В. Прекондиционирование клеток мозга к патологическим воздействиям: вовлеченность протеаз (обзор) // Биохимия. 2015. Т. 80, № 2. С. 204–213 [Yakovlev A.A., Gulyaeva N.V. Possible role of proteases in preconditioning of brain cells to pathological conditions // Biohimiya. 2015. Vol. 80, № 2. Р. 204–213. In Russ.].
- Khalil H., Peltzer N., Walicki J. et al. Caspase 3 protects stressed organs against cell death // Mol. Cell. Biol. 2012. Vol. 32, № 22. P. 4523–4533. doi: 10.1128/mcb.00774-12
- Launay S., Hermine O., Fontenay M. et al. Vital functions for lethal caspases // Oncogene. 2005. Vol. 24, № 33. P. 5137– 5148. doi: 10.1038/sj.onc.1208524
- McLaughlin B., Hartnett K.A., Erhardt J.A. et al. Caspase 3 activation is essential for neuroprotection in preconditioning //

Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, № 2. P. 715–720. doi: 10.1073/pnas.0232966100

- Muller G. J., Stadelmann C., Bastholm L. et al. Ischemia leads to apoptosis-and necrosis-like neuron death in the ischemic rat hippocampus // Brain Pathol. 2004. Vol. 14. Iss. 4. P. 415–424. doi: 10.1111/j.1750-3639.2004.tb00085.x
- Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 5th ed. San Diego, CA: Elsevier Academic Press, 2005. 367 p.
- Winkelmann E. R., Charcansky A., Faccioni-Heuser M. C. et al. An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion // Anat. Embryol. (Berl.) 2006. Vol. 211. Iss. 5. P. 423–434. doi: 10.1007/s00429-006-0095-z
- Zeng Y. S., Xu Z. C. Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia // Neurosci. Res. 2000. Vol. 37. Iss. 2. P. 113–125. doi: 10.1016/ s0168-0102(00)00107-3

Поступила в редакцию 12.07.2019 Получена после доработки 25.09.2019

IMMUNOHISTOCHEMICAL DEMONSTRATION OF APOPTOSIS AND NEUROPLASTICITY IN THE CEREBRAL CORTEX OF ALBINO RAT AFTER OCCLUSION OF THE COMMON CAROTID ARTERIES

D. B. Avdeev, S. S. Stepanov, A. V. Gorbunova, V. A. Akulinin, A. Yu. Shoronova

Objective — to study the activity of the apoptotic proteins (bcl-2, p53, caspase-3) and neuroplasticity (p38, MAP-2) of the sensorimotor cortex (SMC) of the brain of intact albino rats, and at different times after a 20-minute occlusion of common carotid arteries (CCAO).

Material and methods. Light microscopy (staining with hematoxylin and eosin), immunohistochemistry and morphometry were applied. Material for the study: control group (shamoperated animals, n=5), main group (animals 1, 3, 7, 14, 30 days after the CCAO, n=25).

Results. It was demonstrated that after CCAO, when an irreversible destruction of part of SMC neurons occurred (layer III -21,5%, V -19,0%), the processes (MAP-2) and synapses (p38) of the surviving neurons were reorganized. The relative labelling ratio of antibodies to p38 and caspase-3 localized in synaptic terminals was first reduced (on the 1st and 3rd day), and then restored (on the 7th day). In the dynamics of the, The most pronounced changes in caspase-3 during the postischemic period were observed after 7, 14, and 30 days, when its content exceeded the content of p38.

Discussion. Post-ischemic compensatory reorganization of the neuron communication system (processes, synapses) is associated with a high content of caspase-3 in axons. No manifestations of apoptosis (activation of caspase-3 in the pericarion) were detected.

Conclusions. Caspase-3 must be considered in terms of its pleiotropy, participation in adaptation and recovery processes — neuroplasticity.

Key words: *acute ischemia, neocortex, caspase-3, p53, bcl-2, p38, MAP-2*

Omsk State Medical University, 12 Lenina St., Omsk 644099