Tom 155. № 2

(через 2 нед, 4-й этап). Активация МП была отмечена на завершающем этапе (через 3 нед), когда происходила нормализация уровней ЛКБ, ЩФ и НЭ. Реакция угнетения, предшествующая активации, наблюдалась у ЛКБ (на 1-м этапе обследования), МП и НЭ (на 1-м и 2-м этапах). При этом момент перехода метаболического фактора в состояние активации сопровождался появлением достоверной положительной корреляционной связи его значений с площадью раневой поверхности.

Должиков А.А., Тверской А.В., Морозов В.Н. (г. Белгород, Россия)

СТРОЕНИЕ НЕЙРАЛЬНЫХ ОБРАЗОВАНИЙ И КРОВЕНОСНЫХ СОСУДОВ ГИППОКАМПА ПРИ СТРЕССЕ

Dolzhikov A. A., Tverskoy A. V., Morozov V. N. (Belgorod, Russia)

NEURAL STRUCTURES AND BLOOD VESSELS OF THE HIPPOCAMPUS IN STRESS

Гиппокамп, участвующий в механизмах памяти и регуляции поведенческих реакций, является кортикостероид-чувствительным. Он также относится к одной из основных структур головного мозга, поражаемых при болезни Альцгеймера (БА), в патогенезе которой большое значение придается нарушениям состояния гемато-энцефалического барьера, что отражает термин «болезнь малых сосудов». Нами проведено экспериментальное исследование изменений в полях СА1, СА3 гиппокампа при иммобилизационном и эмоционально-болевом стрессах. Исследование выполнено на белых лабораторных крысах (по 10 животных в каждой экспериментальной и контрольной группах) с моделированием стрессовых воздействий в течение 5 дней стандартными методами. При обоих видах стрессовых воздействий в пирамидном и полиморфном слоях выявлялись очаги нейронального опустошения. Выявлено уменьшение базальноапикального размера пирамидных нейронов, уменьшение площади перикарионов. Обнаружены дендриты с признаками ретракции, что вместе с морфометрическими параметрами перикарионов может отражать уменьшение площади аксо-дендритических и аксосоматических синапсов. Выявленное уменьшение диаметров ядер, снижение содержания двуядрышковых нейронов и хроматолиз отражают нарушения биосинтетической активности нейронов. В кровеносных сосудах выявлены повреждения эндотелиальной выстилки, признаки гемореологических нарушений, дезорганизация адвентиции и пограничных глиальных мембран. Характерно образование широких периваскулярных пространств, которые являются следствием и индикатором разрушения гемато-энцефалического барьера. Полученные данные указывают на участие обусловленных стрессом повреждений в механизмах нейродегенерации, реализуемых как первично через повреждения кортикостероид-чувствительных нейронов, так и вторично, вследствие гемоциркуляторных нарушений.

Долматова И.Ю., Валитов Ф.Р., Ганиева И.Н., Кононенко Т.В. (г. Уфа, Россия)

МОРФОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ РОСТА И РАЗВИТИЯ ТЕЛЯТ В ЗАВИСИМОСТИ ОТ ИХ ГЕНОТИПА ПО ГЕНУ СОМАТОТРОПНОГО ГОРМОНА

Dolmatova I. Yu., Valitov F. R., Ganiyeva I. N., Kononenko T. V. (Ufa, Russia)

MORPHOMETRIC INDICATORS OF GROWTH AND DEVELOPMENT OF CALVES, DEPENDING ON THEIR GENOTYPE IN SOMATOTROPIC HORMONE GENE

Ген гормона роста крупного рогатого скота (GH) локализован в хромосоме 19, имеет размер 1800 п.н. и состоит из 5 экзонов и 4 интронов. Изучали полиморфизм гена GH в интроне 3 (MspI-маркер; аллели GH^C и GH^D) и экзоне 4 (AluI–маркер; аллели GH^{L} и GH^{V}) в связи с показателями роста и развития телят бестужевской (n=20) и черно-пестрой (n=26) пород в условиях СПК-племзавода имени Ленина Дюртюлинского района РБ. Генотипирование телят по AluI- и MspI-маркерам гена GH осуществлялось методом ПЦР-ПДРФ в лаборатории молекулярной генетики ФГБОУ ВО Башкирский ГАУ. Для изучения динамики роста и развития проводили взвешивание и брали промеры телят (высота в холке, ширина, глубина и обхват груди, обхват пясти, полуобхват зада, ширина в маклоках, косая длина туловища) в возрасте 3, 6, 9, 12, 15 и 18 мес. В результате исследований показано, что генотип гена GH как по AluI-, так и по MspI-маркеру не оказывает влияния на массу телят обеих пород при рождении. При анализе динамики изменений промеров у животных с различными генотипами по AluI-маркеру гена GH, отмечено, что у бестужевских телят с генотипом GHVV в 12-месячном возрасте такие промеры как глубина груди, полуобхват зада и обхват пясти значимо больше, чем у сверстников, имеющих генотипы GH^{LL} (разница составляет 16,1 см; 22,2 см и 3,6 см соответственно). Описанные промеры характеризуют развитие мясных качеств, следовательно, можно сделать вывод, что у животных с генотипом GHVV бестужевской породы развитие идет по более выраженному мясному типу. Для молодняка черно-пестрой породы таких четко выраженных закономерностей не отмечено. Молодняк обеих исследованных пород, подразделенный по генотипам MspI-маркера гена GH, не имеет значимых различий ни по промерам, ни по динамике живой массы, поэтому можно предположить, что аллели GH^C и GH^D не связаны с изученными показателями.

Дробленков А.В., Бобков П.С., Федоров А.В., Маградзе Р.Н., Попковский Н.А. (Санкт-Петербург, Россия)

НЕЙРОПЕПТИД ОРЕКСИН А КАК МИШЕНЬ ФАРМАКОЛОГИЧЕСКОЙ КОРРЕКЦИИ АЛКОГОЛЬНОЙ ЗАВИСИМОСТИ, ФОРМИРУЕМОЙ В ПЕРИНАТАЛЬНОМ ПЕРИОДЕ