полета клетки были исследованы с использованием МТТ-теста, сканирующей электронной и конфокальной лазерной микроскопии с применением флюоресцентного окрашивания на митохондрии и тубулин. Исследование показало, что в клетках обеих линий в культуре существенно снижался индекс пролиферации, изменялись размеры и форма: они подвергались гипертрофии, приобретали неровные контуры, становились эксцентричными, перераспределяли и увеличивали число специализированных структур плазмолеммы. Усиления апоптоза в обеих клеточных линиях не отмечено. В «послеполетных» ЭЦ и ОБ отмечены сходные изменения органелл: поляризация митохондрий и нитей тубулина, ослабление флюоресцентного свечения. Таким образом, обе клеточные линии проявили в космосе снижение уровня пролиферации и изменения, свидетельствующие о снижении уровня метаболизма и дезинтеграции цитоскелета.

Капитонова М.Ю., Нор-Ашикин М.Н.К., Улла М., Гупало С.П., Ахмад А., Хлебников В.В., Агрыцков А.М., Морозова З.Ч., Ряднов А.А. (г. Шах-Алам, Малайзия; Волгоград, Россия) НЕЙРОИММУНОЭНДОКРИННЫЕ ВЗАИМООТНОШЕНИЯ ПРИ СТРЕССЕ В РАННЕМ ПОСТНАТАЛЬНОМ ОНТОГЕНЕЗЕ

Kapitonova M. Yu., Ullah M., Nor-Ashikin M.N.K., Gupalo S.P., Ahmad A., Khlebnikov V.V., Agrytskov A.M., Morozova Z.Ch., Ryadnov A.A. (Shah Alam, Malaysia; Volgograd, Russia)

NEUROIMMUNOENDOCRINE CROSSTALK IN STRESS DURING EARLY PRENATAL DEVELOPMENT

Иммуносупрессивное действие стресса опосредовано активацией гипоталамо-гипофизарноадренокортикальной оси (ГГАО), а также активацией симпатоадреналовой системы, реализующей ГГАОнезависимую постстрессовую иммуномодуляцию. При стрессе в раннем постнатальном онтогенезе сложные онтогенетические изменения в нейроэндокринной и иммунной системах накладываются на стрессиндуцированные, в связи с чем дифференцировать иммуномодуляционные механизмы весьма сложно. Произведено сопоставление изменений в нейроэндокринной и иммунной системах при хроническом стрессе на разных этапах раннего постнатального онтогенеза. Крысы-самцы Спрейг-Доули (48 особей) использовались для моделирования хронического стресса и в качестве возрастного контроля (по 24 животных): 8 крыс на каждую возрастную группу (21, 30 и 60 сут). На гистологических срезах гипоталамуса выявляли КРФ; на срезах гипофиза, надпочечников, тимуса и селезенки — PCNA, каспазу-3, белок S100, CD68, а также АКТГ (гипофиз), CD3, CD20, CD45RC, OX-62 (тимус и селезенка) с последующим анализом изображения. При гомотипическом стрессе в преювенильном периоде постстрессовая иммуномодуляция в большей степени зависит от уровня активации ГГАО, чем в инфантном и подсосном периодах, что позволяет определить онтогенетические закономерности

функционального взаимодействия нейроэндокринной и иммунной систем.

Карелина H.Р., Круглов C.В., Пугач $\Pi.В.$ (Санкт-Петербург, Россия)

МОРФОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ПОКАЗАТЕЛЕЙ СМЕРТНОСТИ ПОТОМСТВА КРЫС ПОСЛЕ ЭТАНОЛОВОЙ ИНТОКСИКАЦИИ

Karelina N.R., Kruglov S.V., Pugach P.V. (St. Petersburg, Russia)

MORPHOLOGICAL BASIS OF LETHALITY INDEXES IN THE OFFSPRING OF RATS AFTER ETHANOL INTOXICATON

Изучали зависимость между длительностью прегравидарного этанолового воздействия на самок и показателями внутриутробной и ранней постнатальной смертности их потомства. Самки (n=135) были разделены на 8 групп: 1 контрольную и 7 экспериментальных (ЭГ). Экспериментальные животные получали в качестве единственного источника жидкости 15% раствор этанола только во время беременности (І группа) и на протяжении 1, 2, 3, 4, 5 и 6 мес до ее наступления (II-VII группы). У крыс изучали матку, маточные трубы и яичники и подсчитывали количество желтых тел. В рогах матки определяли число живых и мёртвых плодов, количество мест имплантации, учитывая нормальные плоды и резорбции. Общую эмбриональную смертность (ОЭС), доимплантационную (ДИС) и постимплантационную смертности (ПИС) рассчитывали по формулам: ОЭС (%)=(КЖТ-КЖП)/КЖТ×100%; ДИС (%)=(КЖТ-КМИ)/КЖТ×100%; ПИС (%)=КПП/ КМИх100%, где КЖТ — количество желтых тел; КЖП — количество живых плодов; КМИ — количество мест имплантации; КПП — количество погибших плодов. Смертность новорождённых крыс в первые 3 сут жизни определяли по отношению количества погибших крысят к количеству родившихся живыми. В структуре ОЭС преобладает ДИС, наиболее высокие показатели которой отмечаются у крыс I, III и VII ЭГ. Максимальная ПИС регистрируется у самок VI ЭГ. Показатель смертности потомства в раннем постнатальном периоде достигает 100% у самок IV ЭГ.

Карпенко Е.А., Усович А.К., Мельник О.П. (г. Витебск, Беларусь; г. Киев, Украина)

ОСТЕОДЕНСИТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ПЛЕЧЕВОЙ КОСТИ ПТИЦ

Karpenko Ye.A., Usovich A.K., Mel'nik O.P. (Vitebsk, Belarus; Kiev, Ukraine)

OSTEODENSITOMETRIC RESEARCH OF BIRD HUMERAL BONE

Исследование строения плечевой кости (ПК) диких птиц с различными типами полета выполнено методом рентгенологической денситометрии (в основе которого лежит принцип ослабления низкоинтенсивного рентгеновского излучения при прохождении через костную ткань) с использованием рентгеновских аппаратов Heliodent Vario (для костей мелких птиц) с радиовизиографом Sirona Dental System (Германия) и Унискан (для костей аистов). Рентгенограммы обработаны с