МАТЕРИАЛЫ ДОКЛАДОВ Морфология. 2014

Цехмистренко Т.А., Исмаилов Ф.Р. (Москва, Россия)

ОСОБЕННОСТИ СТРОЕНИЯ МОЛЕКУЛЯРНОГО СЛОЯ КОРЫ МОЗЖЕЧКА НОВОРОЖДЕННЫХ

Tsekhmistrenko T.A., Ismailov F.R. (Moscow, Russia)
STRUCTURAL PECULIARITIES OF MOLECULAR LAYER
IN CEREBELLAR CORTEX OF THE NEWBORNS

С помощью компьютерной морфометрии на окрашенных по Нисслю, Петерсу и Гольджи препаратах коры мозжечка 11 новорожденных детей измеряли толщину наружного зернистого слоя, площади профильных полей нейронов и фиброархитектонику молекулярного слоя (МС) коры в области центральной дольки, вершины и четырехугольной дольки передней доли мозжечка.В составе МС наблюдается отчетливо оформленный наружный зернистый слой (НЗС), толщина которого увеличивается по направлению от апикального отдела извилины к более глубоким отделам борозд. В червячном отделе толщина НЗС варьирует на вершине извилины от 16,2 до 33,0 мкм, на боковой стенке — от 16,8 до 56,4 мкм, на дне борозды — от 23,4 до 68,4 мкм. В коре полушарий она составляет на вершине листка 14,4–36,6 мкм, на боковой стенке — 18,0– 46,2 мкм и на дне — от 24,0–45,0 мкм. Граница между НЗС и собственно МС более отчетливо выражена в червячной зоне, чем в коре полушарий, где наблюдается «размытость» границ в базальных отделах мозжечкового листка. В МС коры мозжечка новорожденных выявляются 2 подслоя: верхний, включающий мелкие клетки до 3,5-4,0 мкм2, и нижний, более густоклеточный, содержащий овальные клетки размером 5,0-6,3 мкм². Разделение МС на подслои более отчетливо выражено в области четырехугольной дольки по сравнению с центральной долькой и вершиной. Толщина нижнего подслоя составляет более ½ толщины всего молекулярного слоя. Во всех исследованных корковых зонах в МС наблюдаются тонкие параллельные волокна, бергманновские волокна и редкие горизонтальные волокна, включающие аксоны корзинчатых нейронов.

Цускман И.Г. (г. Омск, Россия)

ОСОБЕННОСТИ ВЕТВЛЕНИЯ ВЕНЕЧНЫХ АРТЕРИЙ СЕРДЦА ГУСЯ ДОМАШНЕГО

Tsuskman I.G. (Omsk, Russia)

PECULIARITIES OF BRANCHING OF CORONARY ARTERIES IN THE HEART OF DOMESTIC GOOSE

Методом обычного и тонкого препарирования (по В. П. Воробьеву), а также получения коррозионных препаратов сосудов изучено кровоснабжение сердца у 5 гусей. Установлено, что в кровоснабжении сердца участвуют правая и левая венечные артерии (ВА), которые выходят из основания аорты в области прикрепления кармашковых клапанов. Левая ВА диаметром 1,96±0,02 мм выходит из аорты и делится на окружную и левую нисходящую ветви. Окружная артерия диаметром 1,4±0,01 мм проходит в венечной

борозде до правого ушка сердца, отдавая 10–12 ветвей в левое предсердие. Нисходящая артерия (НА) направляется по левой межжелудочковой борозде в краниовентральном направлении, делясь по магистральному типу на 3 ветви 1-го порядка. 1-я делится по магистральному типу на 12 ветвей, 2-я — по рассыпному типу на 4 ветви, 3-я — по магистральному типу на 3 артериальные ветви. Все ветви входят в стенку левого желудочка под прямым углом. Одновременно от НА отделяются в краниодорсальном направлении 13-14 ветвей для васкуляризации стенки правого желудочка. На уровне основания луковицы аорты от НА отходит межперегородковая артерия диаметром 1,65±0,04 мм в межпредсердную и межжелудочковую перегородки, разветвляясь в них по рассыпному типу на 4 ветви. Правая ВА диаметром 1,93±0,02 мм начинается от основания аорты на уровне правого кармашкового клапана и располагается в венечной борозде между правым ушком и легочным стволом. Она направляется в правую межжелудочковую борозду как НА, доходя до каудального края правого желудочка, где разветвляется по магистральному типу на 13-14 ветвей в стенке правого и левого желудочков. Обе НА анастомозируют между собой рядом с верхушкой сердца.

Чава С.В., Акыева Н.К., Бахмет А.А., Никитюк Д.Б. (Москва, Россия)

МОРФОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ГРУППОВЫХ ЛИМФОИДНЫХ УЗЕЛКОВ В СТЕНКЕ ТОНКОЙ КИШКИ И В БРЫЖЕЕЧНЫХ ЛИМФАТИЧЕСКИХ УЗЛАХ У МЫШЕЙ ПОД ДЕЙСТВИЕМ ИММУНОМОДУЛЯТОРОВ

Chava S.V., Akyeva N.K., Bakhmet A.A., Nikitiuk D.B. (Moscow, Russia)

MORPHOLOGICAL CHARACTERISTIC OF AGGREGATED LYMPHOID NODULES IN THE WALL OF THE SMALL INTESTINE AND MESENTERIC LYMPH NODES IN MICE TREATED WITH IMMUNOMODULATORS

В эксперименте на 100 мышах-самцах в возрасте 2 мес массой 18-22 г гистологическими методами изучали влияние полиоксидония в терапевтических дозах (500 мкг, внутрибрюшинно) на групповые лимфоидные узелки (ГЛУ) в стенке тонкой кишки. Введение полиоксидония вызывает в герминативных центрах лимфоидных узелков ГЛУ уменьшение числа молодых клеток лимфоидного ряда уже на 4-е сутки (в 1,4-1,7 раза по сравнению с контролем). Количество этих клеток продолжает уменьшаться до 14-х суток, а с 21-х суток их число увеличивается, но и на 30-е сутки остается ниже контроля. Число митотически делящихся клеток в 4,7 раза меньше, чем в контрольной группе. В герминативных центрах лимфоидных узелков брыжеечных лимфатических узлов уменьшается число лимфобластов в 1,7-4,0 раза, а после 21-х суток оно увеличивается (но остается ниже контроля). Число деструктивно измененных клеток на 21-е сутки в 2,0 раза выше контроля, на 30-е сутки соответствует контролю. В мозговых тяжах содержание плазмоцитов вначале уменьшается

относительно контроля, а на 30-е сутки увеличивается в 1,2 раза, а число деструктивно измененных клеток на 30-е сутки выше контроля (в 1,9 раза). В паракортикальной зоне число молодых лимфоидных клеток вначале уменьшается, а после 7–14-х суток постепенно приближается к контрольному уровню.

Чаиркин И.Н., Чаиркина Н.В., Чекушкин А.А., Юняшина Ю.В. (г. Саранск, Пенза, Россия)

ИЗМЕНЕНИЕ СТРУКТУРЫ КОРКОВОГО ВЕЩЕСТВА НАДПОЧЕЧНИКОВ В ПЕРВЫЕ СУТКИ ПОСЛЕ ОСТРОЙ КРОВОПОТЕРИ

Chairkin I.N., Chairkina N.V., Chekushkin A.A., Yunyashina Yu.V. (Saransk, Penza, Russia)

CHANGE IN THE STRUCTURE OF THE ADRENAL CORTEX ON THE FIRST DAY AFTER ACUTE BLOOD LOSS

На 15 беспородных собаках массой 10-23 кг изучали морфологические особенности надпочечников (НП) через 1 сут после кровопускания из бедренной артерии в объеме 22,83±0,24 мл/кг. 10 собак служили контролем. В НП собак контрольной группы отчетливо выражены корковое (КВ) и мозговое вещество (МВ); соотношение КВ/МВ составляло 3:1. В КВ все 3 зоны (клубочковая, пучковая и сетчатая) хорошо выражены. У собак подопытной группы происходило уменьшение толщины КВ (КВ/МВ=2:1) в основном за счет пучковой зоны. Эндокриноциты клубочковой зоны были резко уменьшены по длине (примерно в 2 раза) и плотно прилегали друг к другу. Их цитоплазма более базофильна, чем у контрольных животных, что связано с уменьшением количества липидных включений, которые имели вид мелких капель, придававших цитоплазме зернистый вид. Эндокриноциты пучковой зоны резко уменьшены в размерах, границы между ними нечеткие. Количество липидных включений в цитоплазме также уменьшалось. Синусоидные капилляры — полнокровные, несколько расширенные. В сетчатой зоне эндокриноциты незначительно уменьшены в размерах, плотно прилегали друг к другу. Их цитоплазма — резко базофильна, в ней равномерно распределены мелкие капли липидов. Между клетками проходят расширенные полнокровные синусоидные капилляры.

СОМАТОТИПОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПОДРОСТКОВ С СИНДРОМОМ ВЕГЕТАТИВНОЙ ДИСФУНКЦИИ ВАГОТОНИЧЕСКОГО ТИПА

Chaplygina Ye.V., Yelizarova Ye.S. (Rostov-on-Don, Russia)

SOMATOTYPICAL PECULIARITIES OF ADOLESCENTS WITH THE SYNDROME OF AUTONOMIC DYSFUNCTION OF VAGOTONIC TYPE

Целью исследования является изучение соматотипологических особенностей подростков с синдромом вегетативной дисфункции (СВД) ваготонического

типа. Проведены соматометрия и соматотипирование 139 подростков, из них 109 здоровых и 30 с СВД, а также 145 девочек-подростков (111 здоровых и 34 — с СВД ваготонического типа. Соматотипирование проводилось по методике Р. Н. Дорохова, В. Г. Петрухина (1989). В результате исследования установлено преобладание микромезосомного (36,2%) и микросомного (28,1%) типов у мальчиков с СВД ваготонического типа, что соответствует низким и ниже среднего значениям длины и массы тела. В группе практически здоровых подростков преобладают представители мезосомного (33,3%) и микромезосомного (28%) типов, что соответствует средним и ниже среднего значениям габаритных показателей. В группе девочек с СВД ваготонического типа выявлено преобладание представительниц мезосомного типа (41,1%), что соответствует средним значениям длины и массы тела. У здоровых девочек преобладают микромезосомный (32,6%) и макросомный (26%) типы, соответствующие ниже среднего и высоким значениям габаритных показателей. Полученные данные могут быть использованы при проведении профилактических осмотров с целью выявления предрасположенности к вегетативным нарушениям сердечно-сосудистой системы у подростков.

Чаплыгина Е.В., Муканян С.С., Каплунова О.А. (г. Ростов-на-Дону, Россия)

КЛИНИЧЕСКАЯ АНАТОМИЯ ВЕН ДИАФРАГМЫ И ИХ АНАСТОМОЗОВ

Chaplygina Ye.V., Mukanyan S.S., Kaplunova O.A. (Rostov-on-Don, Russia)

CLINICAL ANATOMY OF THE THE DIAPHRAGMAL VEINS AND THEIR ANASTOMOSES

Исследование проведено на препаратах диафрагмы, взятых от трупов 30 людей зрелого возраста обоих полов, с использованием инъекционного, препарирования, морфометрического и вариационностатистического методов. Исследования показали, что количество левых нижних диафрагмальных вен, впадающих в нижнюю полую вену варьирует незначительно. В 90% случаев выявлена одиночная левая нижняя диафрагмальная вена, её диаметр варьировал от 3,4 до 5,5 мм (4,1±0,2 мм). В 10% случаев выявлена парная левая нижняя диафрагмальная вена, с диаметром каждой от 1,2 до 2,1 мм (1,6±0,1 мм). Диаметр левой перикардодиафрагмальной вены варьировал от 1 до 2,5 мм (1,85±0,1 мм), а диаметр анастомоза между левой нижней диафрагмальной и перикардодиафрагмальной венами — от 2 до 3,5 мм (2,9 \pm 0,5 мм). Полученные данные необходимо учитывать при выполнении имплантации левожелудочкового электрода в левую нижнюю диафрагмальную вену или в анастомоз этой вены с перикардодиафрагмальной веной при проблемах, связанных с непроходимостью венечного синуса.