у плодов на 9–9,5-й неделе завершается формирование глубокой части субаортального мешка, наружных подвздошных, внутренних подвздошных и паховых мешков, их соединений между собой и с первичными лимфатическими структурами смежных областей.

Шуркус Е.А. (Санкт-Петербург, Россия)

МАГИСТРАЛИЗАЦИЯ АОРТОКАВАЛЬНОГО ЛИМФАТИЧЕСКОГО СПЛЕТЕНИЯ

Shurkus Ye.A. (St. Petersburg, Russia)

MAGISTRALIZATION OF THE AORTO-CAVAL LYMPHATIC PLEXUS

Исследование выполнено на трупах 75 плодов на 11-36-й неделе развития с использованием гистологических окрашенных срезов, методики тотального препарата по А. В. Борисову, инъекции и препарирования под микроскопом МБС-2, морфометрии. Поясничное лимфатическое русло плодов на 11-12-й неделе представлено густым, многослойным сплетением с зачатками лимфатических узлов, которое окружает со всех сторон брюшную аорту, нижнюю полую вену и брюшной аортальный параганглий. У плодов на 13-19,5-й неделе аортокавальное сплетение подвергается магистрализации, в ходе которой часть капилляров полностью редуцируются и происходит его разрежение в 2-3 раза. В гетероморфном сплетении выявляются сосуды с перепадом калибра до 30 раз, при этом диаметр крупных магистралей по сравнению с сосудами исходного сплетения возрастает трехкратно. Изменяется его архитектоника с заметным преобладанием сосудов продольной направленности. Следствием магистрализации является неодинаковая частота выявления индивидуально изменчивых вариантов поясничных лимфопроводящих путей. При этом различная степень магистрализации аортокавального сплетения (слабая, средняя или сильная) приводит к формированию сплетениевидных, промежуточных и мономагистральных поясничных путей, неодинаковая протяженность (большая, умеренная или малая) — к развитию длинных, средних и коротких путей, а топографическое проявление (правостороннее, левостороннее, двустороннее) — к асимметрии их строения. У плодов на 8-м месяце в стенке лимфатических сосудов поясничного русла появляются миоциты и оформляются мышечные лимфангионы.

Шурыгина О.В., Ямщиков Н.В., Тулаева О.Н. (г. Самара, Россия)

МОРФОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ ТКАНЕВОГО СОСТАВА СТЕНКИ ВЛАГАЛИЩА МЛЕКОПИТАЮЩИХ

Shurygina O.V., Yamshikov N.V., Tulayeva O.N. (Samara, Russia)

THE MORPHOLOGICAL STUDY OF THE PECULIARITIES OF TISSUE COMPOSITION OF MAMMALIAN VAGINAL WALL

Стенка влагалища млекопитающих имеют сходные тканевой состав и план строения. Стенка наружного отдела влагалища образована слизистой (СО), мышечной (МО) и адвентициальной (АО) оболочками.

Многослойный плоский ороговевающий эпителий СО наружного отдела сменяется неороговевающим эпителием ближе к среднему отделу влагалища. Собственная пластинка СО образована рыхлой волокнистой соединительной тканью с хорошо развитыми коллагеновыми волокнами. МО представлена двумя типами мышечных тканей — поперечнополосатой в наружном отделе и постепенно заменяющей ее гладкой мышечной тканью (средний и внутренний отделы). По своим ультраструктурным, гистохимическим характеристикам исчерченная мышечная ткань влагалища млекопитающих аналогична мышечной ткани пищевода, некоторых сфинктеров внутренних органов и может быть выделена в отдельную группу поперечнополосатой нескелетной мышечной ткани. Гладкая мышечная ткань образует 2, ближе к шейке матки — 3 слоя гладких миоцитов, ее структурной единицей является гладкий миоцит. В составе их популяции выделяют несколько клеточных типов: сократительный, синтетический и сократительно-синтетический, обладающие ультраструктурными особенностями. Размеры гладких миоцитов у разных видов животных имеют различия. Также имеются незначительные колебания размеров клеток и их ядер между фазами эстрального цикла. АО представлена рыхлой волокнистой соединительной тканью.

Щербак Н.С., Галагудза М.М., Юкина Г.Ю., Баранцевич Е.Р., Томсон В.В., Шляхто Е.В. (Санкт-Петербург, Россия)

СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОЦЕНКА МИКРОЦИРКУЛЯТОРНОГО РУСЛА ПРИ ИШЕМИЧЕСКОМ ПОСТКОНДИЦИОНИРОВАНИИ ГОЛОВНОГО МОЗГА

Shcherbak N.S., Galagudza M.M., Yukina G.Yu., Barantsevich Ye.R., Tomson V.V., Shlyakhto Ye.V. (St.Petersburg, Russia)

STRUCTURAL AND FUNCTIONAL ASSESSMENT OF THE MICROVASCULATURE AFTER CEREBRAL ISCHEMIC POSTCONDITIONING

Ишемическое посткондиционирование (ИПостК) эндогенный механизм, позволяющий защитить клетки от повреждающего действия ишемии-реперфузии. Цель исследования — изучение изменения активности щелочной фосфатазы (ЩФ), как маркера активности транспортных процессов, в коре головного мозга (ГМ) монгольских песчанок при применении ИПостК при обратимой глобальной ишемии. Ишемию ГМ моделировали двусторонней окклюзией общих сонных артерий на 7 мин (n=8). ИПостК было представлено в виде 3 эпизодов по 15 c/15 с реперфузии/реокклюзии (n=8). Через 48 ч в коре выявляли активность ЩФ с регистрацией оптической плотности на цитоспектрофотометре плаг-методом (D), подсчитывали относительный объём (V) функционально активных капилляров, вычисляли коэффициент кровоснабжения коры (К) по формуле: K = D×V. Ишемия приводит к значимому (P<0,05) снижению показателей D, V, K (в 2,3, 3,5 и 8 раз соответственно), при сравнении с ложнооперированны-