МАТЕРИАЛЫ ДОКЛАДОВ Морфология. 2018

Кудряшова В. А., Ризаева Н. А., Шумак А. В. (Москва, Россия)

МОРФОЛОГИЯ VASA VASORUM ГРУДНОГО ПРОТОКА

Kudryashova V. A., Rizayeva N. A., Shumak A. V. (Moscow, Russia)

MORPHOLOGY OF VASA VASORUM OF THORACIC DUCT

Изучение микротопографии сосудов в стенке грудного протока, участвующих в кровоснабжении и питании ее оболочек, актуально для понимания патологических процессов в главном лимфатическом коллекторе. Например, разрыв vasa vasorum в средней оболочке грудного протока приводит к воспалительной реакции и, как следствие, — расширению или разрыву грудного протока. Цель работы — изучение vasa vasorum в стенке грудного протока на препаратах от 20 трупов людей зрелого возраста. Использованы продольные и тангенциальные срезы различных отделов стенки грудного протока, окрашенных по ван Гизону, Вейгерту и Гейденгайну. Основные локальные особенности обнаружены в ангиоархитектонике интрамурального кровеносного русла в средней оболочке грудного протока. Для сети капилляров в tunica media характерно постоянное изменение направления хода сосудов. Только в грудном отделе протока артерии входят в стенку органа параллельными рядами на одинаковом друг от друга расстоянии, что связано с ранее выявленной нами конструкцией соединительнотканного каркаса средней оболочки протока. При изменении объема грудного протока пучки соединительнотканных волокон его стенки, а вместе с ним и петли артериального и венозного сплетений, петли сети кровеносных капилляров могут изменять свое строение, приспосабливаясь к его новому положению. Таким образом, конструкция соединительнотканного остова и ангиоархитектоника артериального и венозного сплетений и сети кровеносных капилляров стенки грудного протока приспособлены к одной из его основных функций — периодическому изменению объема.

Кузнецов С. В. (Москва, Россия)

СТРУКТУРНЫЕ ПРЕОБРАЗОВАНИЯ КОЖНОГО ПОКРОВА В УСЛОВИЯХ СТИМУЛЯЦИИ РЕПАРАТИВНОЙ РЕГЕНЕРАЦИИ

Kuznetsov S. V. (Moscow, Russia)

STRUCTURAL REMODELING OF THE INTEGUMENT AFTER THE STIMULATION OF REPARATIVE REGENERATION

На основании данных световой микроскопии и микроскопической морфометрии установлены структурные преобразования кожи при заживлении ее полнослойного экспериментального

дефекта у морских свинок в условиях стимуляции регенераторных процессов: использование мазевой композиции на основе серо-хитозама. Выявлено, что местное применение мазевой композиции приводит к 14-суточному сроку наблюдений к полной эпителизации раневого дефекта и формированию субэпителиально рубцовой ткани с рыхлоупакованными пучками коллагеновых волокон с последующей ее перестройкой в кожный регенерат. У животных контрольной группы в аналогичный период наблюдений обнаружен рост эпителия по поверхности грануляционной и рыхлой соединительной ткани. Периваскулярно выявлены скопления соединительнотканных клеток, в регенерате — очаговые клеточные инфильтраты с разрастанием грануляционной и волокнистой соединительной ткани. Таким образом, использование препарата, стимулирующего восстановительные процессы в области полнослойной кожной раны, ускоряет ремоделирование рубцовой ткани, индуцирует процесс регенерации и увеличивает в 2,5 раза относительно контроля скорость заживления дефекта.

Кузнецова Д. С., Проданец Н. Н., Родимова С. А., Тимашев П. С., Баграташвили В. Н., Загайнова Е. В. (Москва, г. Нижний Новгород, Россия)

РОЛЬ ПОДСАЖЕННЫХ МСК В РЕГЕНЕРАЦИИ КОСТНОЙ ТКАНИ

Kuznetsova D. S., Prodanets N. N., Rodimova S. A., Timashev P. S., Bagratashvili V. N., Zagaynova Ye. V. (Nizhniy Novgorod, Russia)

THE ROLE OF IMPLANTED MSCS IN BONE TISSUE REGENERATION

Мезенхимальные стволовые клетки (МСК) выделяли из костного мозга трансгенных С57/ В16 мышей, экспрессирующих зеленый флуоресцентный белок GFP (GFP(+) мыши), и из костного мозга C57/B16 мышей (GFP(-) мыши). За 3 дня до имплантации клетки высевали на скаффолды, полученные поверхностным селективным лазерным спеканием. В теменной кости мышей с помощью стоматологического трепана формировали дефект диаметром 4 мм. Зона дефекта закрывалась скаффолдом. Эксперимент включал три группы животных. Первая группа состояла из GFP(-) мышей, которым были имплантированы скаффолды с GFP(+)MCK. Во второй группе GFP(+) мышам внедряли скаффолды с GFP(-)MCK. Третья контрольная группа представляла собой GFP(+) мышей с пустым скаффолдом без подсаженных клеток. Исследование показало, что через 6 и 12 нед после операции на скаффолдах было выявлено большое количество подсаженных GFP(-)MCK и GFP(+)MCK, при этом собствен-