МАТЕРИАЛЫ ДОКЛАДОВ Морфология. 2018

ется одной из самых актуальных проблем современной репродуктивной медицины. Это комплексная проблема, причинами которой могут быть морфологические изменения со стороны эндометрия и матки, нарушение гемостаза у пациенток, смещение «окна имплантации» и др. у женщины. Вместе с тем, неудачи имплантации могут быть связаны со статусом гамет, несущих свой генетический материал в будущие эмбрионы, и генетическим статусом эмбрионов. По данным литературы число анэуплоидных эмбрионов при культивировании in vitro у разных возрастных групп пациентов составляет 30-70%. Современные методы генетического исследования (NGS) позволяют проанализировать состав всех 46 хромосом развивающегося эмбриона человека до момента его переноса в полость матки. Такой подход позволяет предотвратить рождение ребенка с генетическими отклонениями и наследственными заболеваниями. Генетическая диагностика развивающихся эмбрионов особенно важна для пациентов старшей возрастной группы (более 40 лет), где уровень анеуплоидии ооцитов составляет до 80%. Исследование генетического статуса эмбрионов в 38 циклах ЭКО на клинической базе ФГБОУ ВО СамГМУ Минздрава России «Матьи-дитя, Самара» в старшей возрастной группе позволило достичь клинической беременности в 44% при переносе одного нормального протестированного эмбриона по сравнению с контрольной группой без проведения генетической диагностики, где данный показатель составил 12%. Среди 120 исследованных эмбрионов число эуплоидных составило 35,8%, анэуплоидных 64,2%, мозаичных — 19,2%, с хаотичным хромосомным набором — 0.025%.

Шурыгина О. В., Тугушев М. Т., Стрючков С. В. (г. Самара, Россия)

НОВЫЕ ФУНКЦИОНАЛЬНЫЕ ТЕСТЫ В ОЦЕНКЕ КАЧЕСТВА СПЕРМЫ ЧЕЛОВЕКА

Shurygina O. V., Tugushev M. T., Striuchkov S. V. (Samara, Russia)

NEW FUNCTIONAL TESTS IN THE ASSESSMENT OF HUMAN SPERM QUALITY

Введение автоматизированных систем оценки эякулята (CASA, MICROPTIC, Spain) и дополнительных опций позволяют получать более полную информацию о качестве спермы (уровень гиперактивированных сперматозоидов, фрагментация ДНК и др.), а также нивелируют эффект человеческого фактора на результат анализа. Уровень фрагментации ДНК сперматозоидов (норма — не более 30%) связан с уровнем анеуплоидий в эмбрионах, снижением частоты клинической

беременности, частотой выкидышей после имплантации. Определение уровня фрагментации ДНК в программах вспомогательных репродуктивных технологий (ВРТ) является одним из диагностических критериев оценки качества спермы и позволяет провести своевременную коррекцию сперматогенеза до начала лечения методами ВРТ, что улучшает качество сперматозоидов и эмбрионов. Другим функциональным тестом, который приобретает все более широкое применение в репродуктивной медицине, является тест на определение уровня гиперактивированных сперматозоидов. Уровень таких гамет коррелирует с их оплодотворяющей способностью. На базе лаборатории ВРТ Центра лечения бесплодия «Мать-и-дитя, Самара» проведено 187 исследований эякулята в программах ВРТ с помощью анализатора спермы CASA (MICROPTIC, Spain). Результаты проведенного исследования показали, что снижение уровня гиперактивированных сперматозоидов (менее 20%) в программе ЭКО коррелирует с более низкими показателями частоты наступления беременности (40,5%). При уровне гиперактивированных сперматозоидов более 20% частота наступления клинической беременности составила 51,8%. В программе ИКСИ степень гиперактивации сперматозоидов не влияла на показатель частоты наступления беременности.

Щукарева Е. А., Медетханов Ф. А., Ситдиков Р. И. (г. Казань, Россия)

МОРФОЛОГИЯ ОРГАНОВ КРОВЕТВОРЕНИЯ И ИММУННОГЕНЕЗА У ИНДЕЕК ПРИ ПРИМЕНЕНИИ ПРЕПАРАТА НОРМОТРОФИН

Shchukareva Ye. A., Meidanov F. A., Sitdikov R. I. (Kazan', Russia)

MORPHOLOGY OF HEMOPOIETIC AND IMMUNOGENESIS ORGANS IN TURKEYS TREATED WITH NORMOTROFIN

«Нормотрофин» — комплексный препарат, изготовленный исключительно из растительного сырья. По принципу аналогов было сформировано две группы суточных индюшат: контрольная и подопытная, по 40 особей в каждой группе. В целях морфологического контроля влияния препарата Нормотрофин на организм проведены гистологические исследования органов. Материалом служили кровь, селезенка, фабрициева сумка и тимус индеек 1-, 7-, 14-, 21-, 30-, 60-, 90-, 120-суточного возраста от 3 птиц из каждой группы. Показано, что применение препарата Нормотрофин повышает уровень эритропоэза и гемоглобина у индеек. Линейные показатели тимуса, фабрициевой сумки и селезенки постепенно увеличивались с возрастом индеек, как и абсолютная масса органов. Наибольших знаTom 153. № 3 XIV KOHΓPECC MAM

чений эти показатели значимо достигли в возрасте 90 сут, после чего наблюдали незначительное их уменьшение к 120 сут. У особей подопытной группы, которые получали препарат Нормотрофин, органы развивались интенсивнее и имели показатели выше контрольных аналогов. В гистоструктуре тимуса, фабрициевой сумки и селезенки у индеек происходили неспецифические изменения в виде лимфоидно-гиперпластической, макрофагальной и плазмоклеточной реакций, причем в подопытной группе они наступали несколько раньше. Данные реакции не затухали к 120 сут в сравнении с контрольными аналогами, у которых эти реакции ослабевали. Также в контрольной группе отмечали более выраженное огрубение ретикулярной стромы селезенки и развитие деструктивных изменений соединительной ткани и стенок сосудов. Применение препарата Нормотрофин у подопытной группы способствовало сохранению функциональной активности этих органов до 120 сут.

Юкина Г. Ю., Белозерцева И. В., Полушин А. Ю., Полушин Ю. С. (Санкт-Петербург, Россия)

МОРФОФУНКЦИОНАЛЬНЫЕ ИЗМЕНЕНИЯ ПИРАМИДНЫХ НЕЙРОНОВ ПОЛЕЙ СА1 И СА4 ГИППОКАМПА ПРИ АНЕСТЕЗИИ СЕВОФЛУРАНОМ

Yukina G. Yu., Belozertseva I. V., Polushin A. Yu., Polushin Yu. S. (St. Petersburg, Russia)

MORPHO-FUNCTIONAL CHANGES OF CA1 AND CA4 PYRAMIDAL NEURONS OF THE HIPPOCAMPUS INDUCED BY SEVOFLURANE ANESTHESIA

Изучали поля СА1 и СА4 гиппокампа (крысы Вистар, 7 особей) после воздействия севофлурана (6 ч) и модельной операции на органах брюшной полости (2 об.% севофлурана, поток воздуха 1 л/мин). Контрольных животных (К, 8 особей) на 5 мин помещали в индивидуальные боксы, в которых производили индукцию наркоза. Для гистологического анализа на 22-е сутки после эксперимента изъятый головной мозг фиксировали в 10% формалине, заливали в парафиновые блоки по стандартной методике. Срезы окрашивали по методу Ниссля. С помощью программы ImageScope M в полях CA1 и CA4 подсчитывали число неизмененных пирамидных нейронов с 1, 2 и более ядрышками и необратимо изменённые нейроны (сморщенные без ядра). Полученный показатель пересчитывали на 1 мм протяжённости пирамидного слоя. Сравнение проводили по критерию Манна-Уитни в программе Statistica 7.0. Показано, что после длительной экспозиции севофлурана наблюдается дезорганизация слоёв нейронов в полях СА1 и СА4, определяется периваскулярный отёк. Число изменённых нейронов и нейронов с 1 ядрышком уменьшается незначительно. Среди неизменённых число нейронов с 2 и более ядрышками снижается значимо (с 24±4 до 8±2 в поле СА1 и с 25±4 до 10±2 в поле СА4, при р<0,05). Выявленная структурно-функциональная перестройка коррелирует с ухудшением когнитивных функций, что показано в ряде поведенческих тестов, выполненных до декапитации.

Юмагужин Ф. Г. (г. Уфа, Россия)

СТРОЕНИЕ ТОРАКАЛЬНОЙ МУСКУЛАТУРЫ БУРЗЯНСКОЙ БОРТЕВОЙ ПЧЕЛЫ

Yumaguzhin F. G. (Ufa, Russia)

THE STRUCTURE OF THE THORACIC MUSCULATURE OF BURZYANIAN WILD-HIVE BEE

Гистологические исследования показали, что торакальная мускулатура бурзянской медоносной пчелы состоит из мышечного волокна и симпластического надклеточного образования. Мышечные волокна не пигментированы, а их внутренняя структурная организация идентична с организацией мышечных волокон позвоночных. Саркомеры, являющиеся структурной единицей миофибрилл, представлены толстыми и тонкими протофибриллами, образованными актином и миозином. Актиновые и миозиновые миофиламенты различаются по толщине. Миозиновые толстые миофиламенты образуют спирали, рядом с которыми проходят тонкие актиновые филаменты. Соотношение числа тонких и толстых нитей 8:1, а на концах диска — еще больше. В комплексе друг с другом они формируют гексогональные решетки миофибрилл мышечного волокна. Между миофибриллами от периферии к центру мышечного волокна располагаются ядра. В летательных мышцах нами обнаружены тонкие миофиламенты третьего типа, которые связывают концы миозиновых миофиламентов с Z-дисками. Структура асинхронной мышцы отличается от других отсутствием саркоплазматической сети в канальцах Т-системы и наличием заостренных концов миозиновых миофиламенов. Внутрь крупных волокон проникают трахеолы. Ответвления трахей и трахеол доходят до миофиламентов. До 40% общего объема волокон составляют митохондрии. Саркомерные субъединицы разделены темными Z-мембранами, а с двух сторон к ним прилегают светлые изотропные диски. Анизотропный диск разделен на две половины зоной Н. В этой плоскости зоны Н регистрируется наличие канальцев Т-системы. Четко выраженной саркоплазматической сети не выявляется. Все пространство между пучками миофиламентов занято крупными митохондриями различной формы.