Tom 153. № 3 XIV KOHΓPECC MAM

копытных подкожный слой копыта отсутствует, а эпидермис превращен в мозоль. Копыта горных животных, амортизируя ударную силу шага или скачка, тем самым предотвращают повреждения суставов и переломы костей передней и задней конечностей. Кроме того, копыта служат снабжению конечностей кровью при сильной нагрузке.

Надъярная Т. Н., Смирнова О. Ю., Соколова И. Н. (Санкт-Петербург, Россия)

СТРУКТУРА ЗАЧАТКА ЛИМФАТИЧЕСКОГО УЗЛА ПЛОДОВ КРЫС ПОСЛЕ ПРЕНАТАЛЬНОГО ВОЗДЕЙСТВИЯ СТРЕСС-ФАКТОРОВ

Nadyarnaya T. N., Smirnova O. Yu., Sokolova I. N. (St. Petersburg, Russia)

THE STRUCTURE OF THE FETAL LYMPH NODE PRIMORDIUM IN RATS EXPOSED TO PRENATAL STRESS-FACTORS

Изучены зачатки брыжеечных лимфатических узлов плодов белых крыс 18 сут развития после пренатального воздействия стресс-факторов нерадиационной природы в сравнении с нормой. Зачатки имеют округлую или треугольную форму. Стромальные клетки равномерно распределяются по всей площади зачатка. Паренхима зачатка лимфатического узла не разделена на структурно-функциональные зоны. Основными клеточными элементами в зачатке органа являются малые лимфоциты. Наряду с ними обнаруживаются немногочисленные средние лимфоциты. В клеточной популяции доля лимфоидных элементов в среднем составляет 61,3%, доля ретикулоцитов — 38,7%. При действии стресс-факторов нерадиационной природы наблюдаются некоторые изменения. В клеточном составе существенно увеличивается численность малых лимфоцитов. Численность средних лимфоцитов и лимфобластов не меняется, а количество стромальных клеток значимо снижается. Изучение структурных преобразований в формирующихся брыжеечных лимфатических узлах плодов крыс после пренатального действия стресса подтвердило предположение о стимуляции процессов заселения лимфоидными клетками зачатка лимфатического узла, но не отмечено ускорения дифференцировки органа на структурно-функциональные зоны.

Насирова З. Д. (г. Баку, Республика Азербайджан)
МАКРОСКОПИЧЕСКАЯ АНАТОМИЯ РЕСНИЧНОГО УЗЛА
ЧЕЛОВЕКА

Nasirova Z. D. (Baku, Azerbaijan)

MACROSCOPIC ANATOMY OF HUMAN CILIARY GANGLION

Вариации узлов (1-5) образуют ресничные сплетения $(P\Pi)$, где отмечается один посто-

янный, самый крупный ресничный узел (РУ), расположенный кнаружи от зрительного нерва у места деления глазодвигательного нерва на верхнюю и нижнюю ветви, и непостоянные узлы, в количестве от 1 до 4, располагающиеся позади глазного яблока вокруг зрительного нерва. Последние соединены между собой и с постоянным узлом межузловыми соединенными ветвями. Нередко наблюдалось сращение узла с нижней ветвью или у места деления ее, или же начальным отделом ветви второго порядка, идущей к нижней косой мышце. Чаще других встречалась звездчатая форма узлов, но наблюдались узлы и других форм. Среди связей РУ с нервами глазницы постоянными являются парасимпатический глазодвигательный корешок, отходящий от нижней ветви глазодвигательного нерва; соединительная ветвь носоресничного нерва с РУ, чувствительный корешок; связи узла с симпатическими сплетениями внутренней сонной артерии. К непостоянным относят связи РУ с другими нервами глазницы, а также гассеровым и крылонебными узлами. Парасимпатический корешок представлен преганглионарными волокнами первичного нейрона, а постганлионарные, короткие ресничные нервы, конечным нейроном центробежного пути в периферическом отделе вегетативной нервной системы. В местах РУ, где происходит соединение обоих указанных нейронов, синапсах, отмечается мультипликация нейронных связей, что имеет большое значение в клинике узла. Другие волокна проходят через узел транзитно. С практической точки зрения следует различать РП с множественными и одиночными РУ, в котором имеется большое количество топографически разных нервных связей по отношению к самому узлу до 12 задних, в среднем до 6 передних, а также до 4 межузловых связей.

Насонова Н. А., Лопатина Л. А., Заварзин А. А., Писарев Н. Н. (г. Воронеж, Россия)

АКТУАЛЬНЫЕ ВОПРОСЫ ДИСТАНЦИОННОГО ОБУЧЕНИЯ СТУДЕНТОВ В СИСТЕМЕ MOODLE

Nasonova N. A., Lopatina L. A., Zavarzin A. A., Pisarev N. N. (Voronezh, Russia)

ACTUAL ASPECTS OF STUDENTS'DISTANCE LEARNING IN MOODLE SYSTEM

Продолжительность занятий в медицинском вузе ограничивает время общения преподавателя и студента, при этом количество обучающихся в группе не всегда дает возможность преподавателю полноценно уделить внимание каждому из них. Таким образом, дистанционные способы обучения являются очень актуальными в настоящее время. Одним из таких методов дистанционного

МАТЕРИАЛЫ ДОКЛАДОВ Морфология. 2018

обучения является разработка заданий в системе Moodle. При этом соблюдаются основные методики преподавания, но реализуются они при помощи интернет-технологий, в чем заключается основное отличие от традиционных методов обучения студентов. Выполняя задания, размещенные преподавателем в системе Moodle, студент имеет возможность осуществлять контакт с преподавателем, находящимся на расстоянии. В системе Moodle можно разместить лекционный материал, при этом акцентируя внимание студента на необходимость посещения и конспектирования лекции. Размещение в системе Moodle тестовых заданий дает возможность студенту в удобное для него время продемонстрировать свои знания по изучаемой теме. Кроме того, в системе Moodle удобно размещать материал, который студентам тяжело воспринимать на слух. В системе Moodle студент также может увидеть вопросы для самоподготовки к новым занятиям. Преподаватель в режиме онлайн может оценить знания студентов, а также провести контроль активности обучающихся в системе Moodle. Таким образом, дистанционные методы обучения студентов востребованы в настоящее время, но это не отменяет традиционных методов педагогики, скорее дополняет их. Но при этом нужно учитывать, что необходимым условием дистанционного обучения является наличие выхода в интернет и устройства, позволяющего осуществлять этот выход.

Насонова Н. А., Соколов Д. А., Анохина Ж. А., Лопатина Л. А. (г. Воронеж, Россия)

РЕАКЦИЯ НЕЙРОНОВ ХВОСТАТОГО ЯДРА НА ОДНОКРАТНОЕ ОБЛУЧЕНИЕ В ДОЗЕ 0,5 ГР С РАЗЛИЧНОЙ МОЩНОСТЬЮ ДОЗЫ

Nasonova N. A., Sokolov D. A., Anokhina Zh. A., Lopatina L. A. (Voronezh, Russia)

REACTION OF CAUDATE NUCLEUS NEURONS TO A SINGLE IRRADIATION IN A DOSE OF 0,5 GY WITH DIFFERENT DOSE RATE INTENSITY

Эксперимент проведен в Государственном научно-исследовательском испытательном институте военной медицины Минобороны России (Москва) на 186 беспородных крысах-самцах массой 200–230 г в возрасте 1,5–2 мес. Крыс подвергали общему равномерному однократному гаммаоблучению спектром 1,2 МЭв в дозе 0,5 Гр с различной мощностью: 100, 250, 660 сГр/ч. Взятие материала производили через 1 сут, 6 мес, 1 и 1,5 года после воздействия. Спустя 1 сут после облучения число гиперхромных нейронов увеличивалось пропорционально мощности дозы и составило в хвостатом ядре (ХЯ) 29,4; 37,9 и 39,1% соответственно различным мощностям дозы. Число пик-

номорфных клеток в ХЯ на 1-е сутки после облучения составило соответственно мощностям дозы 1,6; 1,9 и 4,1%. Содержание клеток-теней практически не изменялось независимо от дозы. Через 6 мес, 1 и 1,5 года значимых различий в содержании различных типов нейронов ХЯ не выявлено. Наблюдаемое на 1-е сутки после воздействия при повышении мощности поглощенной дозы умеренно выраженное увеличение дистрофическинекротических изменений сопровождалось усилением компенсаторно-приспособительных реакций в виде активизации внутриклеточных биосинтетических процессов. Морфологически они проявлялись в виде увеличения числа гиперхромных нейронов. Через 1,5 года пострадиационного периода структурно-функциональные изменения нейронов ХЯ при использовании ионизирующего излучения возрастающей мощности нормализовались.

Насырова Е. В., Лобанов С. А., Хисматуллина З. Р., Шишкин И. В. (г. Уфа, Россия)

ВЛИЯНИЕ ГЛИКОЗАМИНОГЛИКАНОВ НА РЕАКТИВНЫЕ ИЗМЕНЕНИЯ МОЗЖЕЧКА ПРИ ГИПОДИНАМИИ

Nasyrova Ye. V., Lobanov S. A., Khismatullina Z. R., Shishkin I. V. (Ufa, Russia)

INFLUENCE OF GLYCOSAMINOGLYCANS ON REACTIVE CHANGES OF THE CEREBELLUM DURING HYPODYNAMIA

Гиподинамия влияет на нейроны мозжечка и вызывает изменение состава и содержания гликозаминогликанов. Цель исследования — выявление особенностей влияния гликозаминогликанов (ГАГ) на реактивные изменения мозжечка при гиподинамии. Эксперимент проводили на 43 крысах породы Vistar массой 217±11,4 г. Для исследования ГАГ криостатные срезы мозжечка окрашивали альциановым синим при разных рН и молярностях MgCl₂. Исследования показали, что ГАГ влияет на компенсаторные механизмы. Они активируют процессы регенерации, что проявляется в гипертрофии структур клетки и гистохимических изменениях (возрастанием гиалуроновой кислоты к 7-14-м суткам, хондроитин-6сульфата к 14-21-м суткам, гепаран-сульфата к 7-21-м суткам). При этом возрастает роль энергообразующих и синтезирующих структур, что является показателем взаимосвязи разных ее компонентов с составом экстрацеллюлярного матрикса.

Невзорова В. А., Черток В. М., Захарчук Н. В., Черток А. Г. (г. Владивосток, Россия)

ВЛИЯНИЕ ГИПОКСИИ НА СОДЕРЖАНИЕ HIF-2A-ИММУНОПОЗИТИВНЫХ НЕЙРОНОВ И КАПИЛЛЯРОВ В КОРЕ ГОЛОВНОГО МОЗГА КРЫС