МАТЕРИАЛЫ ДОКЛАДОВ Морфология. 2016

Семкин В.И. (Москва, Россия)

ВЛИЯНИЕ СОЛНЕЧНОГО ОБЛУЧЕНИЯ

НА КЛЕТКИ ЭПИДЕРМИСА

Syomkin V. I. (Moscow, Russia)

THE EFFECT OF SOLAR IRRADIATION ON THE EPIDERMAL CELLS

Исследования показали, что в ответ на воздействие ультрафиолетового, а при солнечном облучении — также и инфракрасного излучений, в коже развивается воспалительная реакция — эритема. Морфологически это выражается в изменении микро- и ультраструктуры кожи. Эпидермис загорелой кожи утолщен, в основном за счет рогового слоя, межклеточные промежутки расширены. Электронно-микроскопически в расширенных промежутках обнаруживаются лизосомы, меланосомы и переваривающие вакуоли. В цитоплазме кератиноцитов выявляется хорошо развитая эндоплазматическая сеть, множество рибосом, митохондрий и фагосом. Меланосомы группируются в гигантские меланосомные комплексы по 10-15 органелл, они локализуются в основном над верхним полюсом ядер, формируя защитный экран. Перинуклеарное пространство клеток Лангерганса расширено, а в цитоплазме содержатся набухшие митохондрии и множество везикул. Гранулы Бирбека лишены своей ампулярной части и представлены только «рукоятками». Но наибольшим изменениям подвергается меланоцитарная система эпидермиса. Меланоциты мигрируют в глубокие слои эпидермиса и чаще всего погружены в дерму в виде пальцеобразных выпячиваний, оставаясь изолированными от подлежащей дермы истонченной базальной мембраной. Кроме того, в коже загорелых людей выявляется множество меланоцитов под базальной мембраной. Все эти изменения (утолщение эпидермиса, меланогенез и перераспределение меланосом в кератиноцитах) направлены на защиту организма от воздействия УФ-составляющей солнечного излучения.

Семченко В.В., Степанов С.С., Ерениев С.И., Боголепов Н.Н., Тельцов Л.П. (г. Омск, Москва, г. Саранск, Россия)

ПРОВИЗОРНОСТЬ И РЕПАРАТИВНЫЙ ГИСТОГЕНЕЗ В ГОЛОВНОМ МОЗГУ

Semchenko V.V., Stepanov S.S., Yereniev S.I., Bogolepov N.N., Tel'tzov L.P. (Omsk, Moscow, Saransk, Russia)

PROVISIONALITY AND REPARATIVE HISTOGENESIS IN THE BRAIN

Экспериментальное исследование посвящено поиску провизорного морфологического субстра-

та (ПМС), который формируется в онтогенезе нервной ткани головного мозга (ГМ) млекопитающих. Работа выполнена на половозрелых белых крысах (n=50), эмбрионах (n=10) и новорожденных (n=10) животных, перенесших острую ишемию (клиническая смерть, пережатие маточных артерий). Материал получен в ходе светооптического, электронно-микроскопического и морфометрического исследования неокортекса, таламуса, мозжечка и спинного мозга. Установлено, что после ишемии формируется особый для неполных дифферонов ПМС, для которого характерна повышенная информационная емкость нейронной сети — избыток пластических элементов (незрелые, зрелые контакты, мелкие отростки). В незрелом ГМ до момента формирования отростков и синаптических связей нейроны обладают высоким пролиферативным потенциалом, поэтому восстановление их популяции происходит за счет деления сохранившихся клеток. ПМС зрелого ГМ характеризуется внутриклеточной гиперплазией, гипертрофией и усложнением устройства синапсов, увеличением численной плотности мелких незрелых и зрелых (созревание, реорганизация уже имеющихся) контактов и мелких отростков дистальной части дендритов. Происходит временный возврат к онтогенетически более раннему типу нейронных сетей (высокая избыточность содержания пресинапсов), появляются провизорные гипертрофированные синапсы с высоким потенциалом самопроизвольной трансформации в более эффективные сложные устройства.

Сергеев В.Г., Заколюкина Е.С., Тукмачева К.А. (г. Ижевск, Россия)

ЗАВИСИМЫЕ ОТ ВОЗРАСТА ИЗМЕНЕНИЯ
МИКРОГЛИОЦИТАРНЫХ ФЕНОТИПОВ ЧЕРНОГО
ВЕЩЕСТВА МОЗГА КРЫС В ОТВЕТ НА ВВЕДЕНИЕ БЕЛКА
АЛЬФА-СИНУКЛЕИНА

Sergeyev V.G., Zakolyukina Ye.S., Tukmachyova K.A. (Izhevsk, Russia)

AGE-RELATED CHANGES OF RAT SUBSTANTIA NIGRA MICROGLIAL PHENOTYPES IN RESPONSE TO ALPHA-SYNUCLEIN ADMINISTRATION

Микроглиоциты реагируют на действие целого ряда факторов, таких как патогены, травмы, белки нейронального происхождения (например, белок альфа-синуклеин) постепенным изменением своего цитофенотипа и секрецией провоспалительных факторов. Старение — основной фактор риска большинства нейродегенеративных заболеваний, в механизме которых ключевую роль играет провоспалительная активация микроглиоцитов. Логично полагать, что с возрастом в нервной ткани повышается количество реактив-