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ABSTRACT

In mammals, the liver and spleen are closely related to each other and form the so-called liver-spleen axis. The functioning of
this axis is based on anatomical connection through portal circulation, as well as the commonality of many functions performed.
The connection between the liver and spleen is most pronounced in the development of such pathologic conditions as fibrosis
and cirrhosis. Some clinical and experimental studies found that removal of the spleen leads to a decrease in the severity of
liver fibrosis. A positive effect of spleen removal has also been found in liver resection and liver transplantation. Different
authors suggest several mechanisms of this effect. It is assumed that the spleen in the development of fibrosis becomes an
additional source of cytokines damaging the liver. In addition, monocytes and other leukocytes that support inflammation may
migrate from the spleen to the liver. Another mechanism may be a decrease in blood pressure levels in the hepatic portal
vein after splenectomy. Despite the available evidence, the mechanisms of this effect remain poorly understood. This issue
is relevant for biomedical research, as it may form the basis for the development of new ways to treat liver diseases and
stimulate its regeneration.
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BnusHue cnneH3KTOMMMU Ha TeyeHMe penapaTUBHbBIX
NPoOLLECCOB B NEYEHMU
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AHHOTALMA

B opraHm3ame MieKonuUTaloLLMX NeYeHb U CeNe3éHKa TECHO CBA3aHbI APYT C APYroM U OPMUPYIOT Tak Ha3blBaeMyto NeYEHOYHO-
Cene3éHOYHY 0Cb. B 0CHOBE (DYHKLMOHWUPOBAHWUA 3TOW OCU JIEXMT aHaTOMUYECKas CBA3b Yepe3 MOpTaibHY0 LIMPKYNSALMIO,
a TaKKe 0OLLHOCTb MHOTUX BbINOJIHAEMBIX QYHKLMIA (YTUNN3ALIMS YyKEPOLHBIX aHTUIEHOB, MPOAYKTOB pacnaga rema v ap.).
CBA3b neyeHM U cene3eHKW Hambosiee APKO NPOSBNIAETCS MPW Pa3BUTUM TaKWUX NATONOTMYECKUX COCTOSHUNA, Kak ¢ubpos
W UMpPO3 NeyeHu. B HEKOTOPBIX KIMHUYECKMX W 3KCNEepPUMEHTaNbHBIX UCCeA0BaHMAX 06HapYKeHO, YTO yAaneHue cenesgHKku
NPUBOAMT K YMEHbLUEHWUIO BbIpaXKEHHOCTU GUOPO3a MeyeHy, YBEIMYMBAET MPUKMBAEMOCTb NEYEHOUHBIX TPAHCMNAHTATOB,
a TaKKe YMEHbLLAET BbIpaXKeHHOCTb NEYEHOYHOI He0CTAaTOYHOCTH NOC/E Pe3eKLMM NeyeH!. ABTOPbI YKa3biBaoT Ha HECKOMbKO
MeXaHU3MOB TaKOro BAMsHUA. [peanonaraeTcs, YTO CeNe3éHKa Mpu pas3BuTUM (MOpo3a CTAHOBUTCA AOMOSHUTENbHBIM
MCTOYHMKOM LIMTOKWHOB, NOBPEXAlOLWMX NeveHb. KpoMe Toro, U3 ceneséHKM Yepes cene3éHoYHyIo 1 fanee — NopTabHyio
BEHY B NeYyeHb MOryT MUrpMpoBatb MOHOLUTBI U Apyrue ﬂEVIKOLWITbI, nognepxunearoLlue socnaseHue. ﬂ,pyFMM MeéXaHN3MOM
MOXXET CYXWTb CHWXKEHME YPOBHS KPOBSIHOrO AABMEHWUS B MOPTANbHOM BEHE MeYeHW nocne cnieHakTomun. Hecmotps
Ha MMeIOLLMEeCs AaHHble, MeXaHU3Mbl TaKoro 3deKTa oCTalTCA HeA0CTaTOMHO M3yYeHHbIMU. [laHHbIA Bompoc sBnseTcs
aKTyanbHbIM Ans OUOMEAMLMHCKUX MCCNEeA0BaHWIA, TaK KaK MOXKET Jiedb B OCHOBY pa3paboTku HOBbIX CMOCOBOB neyeHus
3ab0neBaHuii NeYeHN U CTUMYNALMK €€ pereHepaLmm.

KnioueBble ciioBa: neyeHsb; pereHepauua; penapauns, CeNe3€HKa, CNyIeH3KTOMMSA; NeYEHOUHO-Cene3eH0YHas ocChb.
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INTRODUCTION

The liver performs many functions, which determines its
close connection with other organs. Such a relationship, in
particular, is implemented between the liver and spleen and
is interpreted as the hepatosplenic axis [1]. This interaction is
based on the portal circulation (through the splenic vein). In
addition, the liver and spleen are united by the commonality
of the functions performed. This is, first of all, the binding
of foreign antigens, as well as the products of hemoglobin
destruction by macrophages.

Signs of a close relationship between the liver and spleen
were first discovered by clinicians. It has long been known
that liver pathology is accompanied by pathological changes
in the spleen, such as splenomegaly and hypersplenism [2].
The hepatosplenic axis has been most extensively studied in
the context of liver fibrosis, both in patients and in experimental
models [3]. The main morphological manifestation of this
disease is excessive proliferation of connective tissue in
the liver. It was revealed that splenectomy causes a decrease
in the severity of liver fibrosis.

Researchers suggest that the functioning of
the hepatosplenic axis is based on the following mechanism:
when the liver parenchyma is damaged (usually due to
an infection or toxic effects) and hepatocytes die, then
exosomes, chemokines, and molecular patterns associated
with damage are released into the systemic bloodstream,
reaching the spleen through the systemic bloodstream. Here,
macrophages synthesize proinflammatory cytokines and
growth factors that stimulate the synthesis of components of
the intercellular substance. Cytokines, as well as lymphocytes
and monocytes (and, possibly, other types of leukocytes)
reach the liver through the portal circulation. This leads to
the activation of the synthesis of the intercellular substance
components, as well as the death of hepatocytes in other
parts of the organ [4]. With splenectomy, the vicious circle is
broken, so that molecular patterns associated with the injury

Fig. 1. Effect of splenectomy on liver regeneration.

Vol. 162 (2) 2024

DOl https://doiorg/10.17816/morph.633796

Morphology

still enter the systemic circulation but they do not activate
the synthesis of cytokines or growth factors in the spleen.
Thus, cytokines, as well as activated leukocytes, stop entering
the liver through the portal vein, which decreases the level
of damage to its parenchyma and synthesis of intercellular
substance.

Despite the fact that the principle of the relationship
between the liver and spleen in the hepatosplenic axis is
generally understood by researchers, specific biochemical
and cellular mechanisms remain poorly understood. We
present scientifically substantiated mechanisms based
on the literature data (Fig. 1). It is known that, depending
on the factor that caused liver injury, there is specificity
in the interaction of the liver and spleen; therefore, it is
advisable to assess the role of the spleen in fibrosis, liver
resection and its transplantation.

INTACT LIVER

Analysis of modern literature shows that there is very
little information about the effect of splenectomy on the intact
liver. It has been established that splenectomy leads to an
increase in the mass of the intact liver of rats, and mitotically
dividing cells are detected in it. It has been suggested that
hepatocytes and resident macrophages enter the mitotic
cycle [5]. In our work, it has been demonstrated using
specific cellular immunohistochemical markers that mitotic
figures are detected exclusively in hepatocytes. In addition,
in experimental animals after splenectomy, the expression
of the genes IL-6 (interleukin-6), IL-10, Tnf-a (tumor necrosis
factor a), Hgf (hepatocyte growth factor) and NosZ (nitric
oxide synthase-2) increases in the intact liver, which probably
leads to stimulation of hepatocyte proliferation [6]. It remains
unclear what mechanisms cause changes in the expression
of these genes in the intact liver. It can be assumed that
splenectomy leads to changes in blood pressure in the portal
vein [7], as well as to a decrease in the flow of hemoglobin
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utilization products into the liver [8]. These changes primarily
affect the macrophage population, which we found indirect
evidence for [6]. Activated macrophages synthesize a number
of cytokines, including IL-6 and TNF-a, which activate hepatic
stellate cells that synthesize HGF, the main mitogen for
hepatocytes [9].

LIVER FIBROSIS

The mutual influence of the liver and spleen was first
discovered in patients with liver fibrosis. The main source
of synthesis of the intercellular substance components in
the liver during the development of fibrosis are activated
lto cells which differentiate into myofibroblasts. TGF-f
(transforming growth factor ) is currently believed to be
the leading factor in the activation of Ito cells [10, 11].
Immunohistochemical studies in patients with liver cirrhosis
revealed an increased content of TGF-B1 in the spleen and
its colocalization with CDé8* macrophages [12]. In this
regard, the following mechanism is suggested. In patients
with liver cirrhosis, the products of hepatocyte damage
enter the spleen through the systemic bloodstream, where
they activate red pulp macrophages. In turn, macrophages
begin to synthesize TGF-B1, which enters the liver through
the splenic and portal veins, where it activates Ito cells,
as a result of which they begin to produce components
of the intercellular substance. Splenectomy breaks this
vicious circle and leads to an improvement in the liver
structure [12]. Thus, splenic macrophages are an additional
source of TGF-P synthesis. Directly in the liver, the products
of hepatocyte death activate resident liver macrophages,
which also stimulate the synthesis of TGF-f by
Ito cells [10, 11].

One of the possible activators of fibrotic changes in organs
is tumor necrosis factor receptor superfamily 14 (TNFSF14;
also known as LIGHT). LIGHT is synthesized in many cells of
the hematopoietic series, such as macrophages, eosinophils,
and lymphocytes [13]. It has been established that LIGHT
promotes disease progression in patients with pulmonary
fibrosis, as well as collagen deposition in the dermis of
the skin [13]. It was established in the study by Q.S. Liang
et al. that LIGHT promotes the development of liver fibrosis
by binding to LTBR (lymphotoxin-B receptor) and activating
phosphorylation of JNK (Jun N-terminal kinase) [14]. This
increases the secretion of TGF-B1 by macrophages, which
results in liver fibrosis. It is noteworthy that the level of LIGHT
in the blood serum of both experimental animals and patients
decreased after splenectomy, which led to a decrease in
the severity of liver fibrosis [14].

In addition to the secretion of cytokines into the portal
bloodstream, leukocytes, including monocytes and
lymphocytes, can migrate from the spleen to the liver. This
phenomenon was revealed in a model of liver cirrhosis
induced by long-term administration of CCl4 in mice.
Splenectomy restored the balance of Th1/Th2 lymphocytes
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in the liver, which reduced the level of fibrosis [15]. In
the study by H. Jiang et al., splenectomy reduced the level
of liver infiltration by leukocytes, caused the release of
TNF-q, cell apoptosis, and expression of caspase-3 [16]. In
addition, in patients with hepatic cirrhosis after splenectomy,
an increase in the counts of CD8" cells in the peripheral
blood was registered, which caused a significant decrease
in the CD4*/CD8" cell ratio, slowing the progression
of fibrosis and improving antitumor immunity [17]. In
a study by A. Romano et al., which was focused on liver
fibrosis associated with Schistosoma japonicum, it was
established that splenomegaly correlates with a higher
concentration of FOXP3* regulatory T cells in the blood and
an increase in the severity of liver fibrosis. Splenectomy
was accompanied by a decrease in the number of T cells
and the severity of liver fibrosis [18]. Under conditions of
infection with Schistosoma japonicum, the expression of
chemokine genes, lymphocyte and monocyte cell adhesion
molecules increased in the liver. In contrast, in the spleen,
the expression of the corresponding genes decreased or did
not change, which may indicate the recruitment of effector
cells from the spleen to the liver [19].

Liver damage causes receptor-mediated activation
of Kupffer cells, which is expressed in the synthesis and
secretion of proinflammatory cytokines and chemokines
by them, including CCL2. The chemokine CCL2 promotes
the attraction of proinflammatory monocytes to the liver,
which then rapidly differentiate into a local pool of monocyte-
derived macrophages with a proinflammatory phenotype [20].
It has been revealed that splenic macrophages stimulate
the secretion of CCL2 by liver macrophages, which results
in monocyte migration and increased severity of liver
fibrosis [21]. These studies are consistent with the work
that established that the number of monocytes with
the CD11b*CD43hiLy6Clow phenotype increases in the spleen
of mice with liver fibrosis, which are recruited to the liver and
differentiate into macrophages that stimulate the activation
of lto cells [22]. Other authors have demonstrated that
splenectomy leads to the accumulation of monocytes/
macrophages in the fibrotic liver, which is accompanied by
a decrease in connective tissue neoplasm [23].

Thus, some authors postulate a weakening of leukocyte
migration to the liver after splenectomy, while other
researchers do not confirm this. Probably, one or another
experimental or clinical model of liver cirrhosis plays a role
in this process. In the experiment, a model of chronic
administration of CCL4 is often used, and in the study
where the accumulation of monocytes in the liver after
splenectomy was demonstrated, thioacetamide was used
to induce fibrosis [24].

Splenectomy also influences the effectiveness
of the methods used to treat liver pathology. It was
demonstrated in the study by T. Iwamoto et al. that
splenectomy enhanced the repopulation of bone marrow
cells in the liver affected by cirrhosis, which led to a decrease
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in collagen deposition in it. According to the authors,
this effect is due to an increase in the expression of
MMP9 (matrix metalloproteinase 9) in transplanted bone
marrow cells [25]. In addition, it has been established that
splenectomy increases the efficiency of transplantation of
mesenchymal stem cells obtained from adipose tissue into
the liver by increasing the expression of SDF-1 (stromal
cell-derived factor-1) and HGF in the liver [26].

LIVER RESECTION

The effect of splenectomy on liver regeneration after
resection was first studied in models of subtotal liver
resection (removal of 80% or more of the mass) in rats.
It has been established that splenectomy after such liver
damage leads to increased stimulation of its regeneration.
The probable causes of this phenomenon, as in liver cirrhosis,
include the “resolution” of portal hypertension; a decrease
in the degree of liver damage due to a decrease in the level
of proinflammatory cytokines entering from the spleen;
a decrease in vascular endothelial damage; inhibition of
hepatocyte apoptosis [7, 27]. In particular, with 90% of liver
resection, splenectomy leads to a decrease in the synthesis
of acute phase markers in the remaining liver fragment, as
well as to an increase in the synthesis of heme oxygenase-1,
which improves reparation [28]. The flow of proinflammatory
cytokines and the proliferation blocker TGF-1 is terminated
[29-31]. Due to this, the synthesis of HMOX1 (heme
oxygenase 1) increases. HMOX1, in turn, suppresses
the activity of TNF-a, which causes hepatocyte death. In
addition, the synthesis of TGF-B1 and its receptor TGF-BRII
decreases, and the synthesis of HGF and its receptor c-met
increases [26, 29, 30, 32].

It is noteworthy that not only TGF-B1 has an inhibitory
effect on hepatocyte proliferation after liver resection. IL-10
also has these properties. It has been established that after
liver resection, the level of IL-10 synthesis increases both in
the liver itself and in the spleen. Thus, splenectomy prevents
the entry of IL-10 through the portal vein, which increases
the rate of hepatocyte proliferation and positive dynamics of
liver regeneration [33].

Other studies emphasized the role of oxygenation of
the regenerating liver. It has been established that after
splenectomy, oxygen delivery (HDO2) and its consumption
(HVO2) by liver tissue structures increase in the resected liver
of rats. Improved oxygen metabolism induced stimulation
of hepatocyte proliferation [34, 35]. In addition, the results
of the study [36] showed that the minimum residual liver
weight required to restore its normal function decreased
after splenectomy. Liver regeneration is known to require
a huge amount of energy to meet increased metabolic needs
[35, 37, 38]. Splenectomy increases significantly the oxygen
supply, which is necessary for oxidative phosphorylation,
which ensures liver regeneration [36]. This is probably due
to a decrease in venous inflow and a relative increase in
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arterial blood flow [39]. In a study on a 70% liver resection
model in mice, splenectomy accelerated regeneration by
improving the formation of tight intercellular junctions,
which contributed to the establishment of hepatocyte
polarity through the Par 3-aPKC protein. In addition,
splenectomy prevented paracellular leakage of bile
components [40].

However, not all studies have demonstrated the positive
effect of splenectomy on the condition of the damaged liver.
A.G. Babaeva's work demonstrated the inhibitory effect of
splenectomy on liver regeneration after its resection, and
the strength of this effect did not depend on the time elapsed
between liver resection and splenectomy [5]. The reason
for this effect is unclear and requires further research.
It is assumed that one of the reasons for the inhibition
of regeneration after splenectomy may be a decrease in
the level of proteinase inhibitors entering the liver. Thus,
it was demonstrated in the study by A.V. Elchaninov et
al. that with resection of 70% of the liver, an increase in
the expression of genes encoding the synthesis of protease
inhibitors (Serpina3n, Stfa2, and Stfa2l1) was noted in
the spleen of mice [41]. The role of protease inhibitors in
tissue regeneration has become the subject of experimental
studies. In acetaminophen-induced liver injury, an increase
in Serpina3n levels reduced the severity of necrotic and
inflammatory changes in it [42]. A similar trend was noted in
experimental ischemic stroke [43].

LIVER TRANSPLANTATION

The positive effect of splenectomy has also been
demonstrated in the case of liver transplantation in patients
with biliary atresia [44]. It has been established that
simultaneous splenectomy improves the prognosis of liver
graft survival and prevents the development of small-for-
size remnant liver syndrome [45]. It has been revealed that
splenectomy can lead to a decrease in portal hypertension,
a decrease in the synthesis of proinflammatory cytokines
and the level of cell apoptosis in the transplanted liver
[46, 47]. The decrease in blood pressure in the portal vein
is based on a decrease in the synthesis of endothelin-1,
which is a key molecule in microcirculation disorders, since
it causes narrowing of the liver sinusoids [48]. In the study
by T. Matsuura et al., 15.8% of patients who underwent liver
transplantation suffered from persistent thrombocytopenia
and splenomegaly for seven years [49]. However, splenectomy
resulted not only in regression of pancytopenia, but also in
improvement of liver function [44]. Other studies also noted
the key importance of portal vein pressure [50-52]. In
contrast, C. Eipel et al. revealed that the beneficial effect of
splenectomy in small liver lobe syndrome may be due to an
increase in hepatic arterial blood flow with increased oxygen
delivery, rather than a decrease in portal vein hyperperfusion
into the liver remnant [39]. Improved oxygenation probably
stimulates hepatocyte proliferation [34, 35].
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CONCLUSION

The spleen has a significant effect on the course of
reparative processes in the liver. In most cases, this is
demonstrated by splenectomy, which has a stimulating effect
on the reparative processes in this organ. Depending on
the nature of the liver damage, the effect of splenectomy is
manifested through different mechanisms, namely a change
in blood pressure in the portal vein, a decrease in the level of
incoming cytokines and the number of leukocytes. However,
not all studies have revealed a positive effect of splenectomy.
The reasons for the contradictions are still unclear.

A positive or negative effect on the reparative processes
in the liver probably depends on the nature of its damage.
At the same time, the greatest number of studies have
been performed on models of toxic liver damage. The effect
of splenectomy on liver regeneration after resection has
been studied much less. Based on the available literature,
it is not possible to identify the main mechanism by
which splenectomy affects the liver. The main attention of
researchers should be aimed at studying the reaction of
sinusoidal capillary endothelial cells, the liver macrophage
population, as well as the process of leukocyte migration.
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