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ABSTRACT

The aging of the population in developed countries is a trend of major medical and social significance. In this regard, the study
of the etiology and pathogenesis of neurodegenerative diseases, as well as the search for effective treatment methods, is of
particular relevance. For a long time, it was believed that metabolic waste products were drained from the brain parenchyma’s
interstitial fluid into the ventricular system. However, the discovery of the brain’s glymphatic system has significantly advanced
our understanding of the mechanisms underlying pathologies associated with impaired clearance of metabolites from the
brain. This scientific review outlines the main directions in the study of the functional morphology of the glymphatic system
under normal conditions. It provides a detailed description of two theories of cerebrospinal fluid outflow and presents a critical
analysis of both Russian and international research data. Under normal conditions, the function of the glymphatic system
is influenced by heart rate, intracranial pressure, pulse and arterial pressure, as well as the phase of the respiratory cycle.
In addition, sleep quality, head position during sleep, and exposure to toxic substances directly affect glymphatic system
activity. The review also highlights recent data on the glymphatic system of the visual organs. Further research into the
morphofunctional characteristics of the glymphatic system under normal conditions may greatly expand our fundamental
understanding of disease pathogenesis and contribute to the development of new approaches to treatment and prevention.
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CTpyKTypHble M GyHKLUOHANbHbIE 0COOEHHOCTH
rnuMgaTMyecKou CUCTeMbl F0JIOBHOr0 MO3ra:
COBpPEMEHHbI B3rnsg, Ha npobnemy

JI.A. KnwoeBa, [.A. AepuH, K.A. BacsiHnHa

Poccuickuit HaumoHanbHbIN UCCien0BaTeNbCKUIA MeAMUMHCKUA YHuBepceuTeT uM. H.W. MuporoBa, Mockea, Poccus

AHHOTALMUA

Bonbluylo MeaMKo-COLManbHY 3HAUMMOCTb UMEET TEHAEHUMS K CTapeHWIo HaceneHns pasBuTbiX CTpaH. B cBsA3n ¢ atum
0C06EHHYI0 aKTyanbHOCTb MUMEET U3y4eHWe ITMONIOrMW U NaToreHesa HelpogereHepaTMBHbIX 3aboneBaHWi, a TaKKe MOMCK
MeTof0B WX JieueHus. [onroe BpeMs cuMTanocb, YTO MpOAYKTbl MeTabonuaMa OpEHUPYIOTCA U3 WHTEPCTULMANBHON MHUA-
KOCTM NapeHXUMbl Mo3ra B cucTeMy XenynoukoB. OfHaKo OTKpbITMe 0coboi rMuMbaTUYecKoi CUCTEMbI FOSIOBHOMO MO3ra
MO3BOSIUIO 3HAUUTENBHO MPOABUHYTLCA B MOHUMaHWUM MPUPOLbI NaTONOTWIA, CBA3AHHLIX C HApYLUEHWEM MPOLecca oumLLe-
HUS TOI0BHOro Mo3ra 0T MeTabonuToB. HayuHblii 0630p OTpaXKaeT OCHOBHblE HanpaBneHUs B U3y4eHUM BYHKUMOHANbHOM
Mopdonoruu rauMdaTyeckon cucTeMbl B HopMe. B HEM deTanbHO onucaHbl ABE TEOPUW OTTOKA JIMKBOpA M KPUTUYECKM
MpOoaHann3vpoBaHbl JaHHbIE OTEYECTBEHHBIX W 3apybexHbIX uccnefoBaHuin. B HopMe QyHKUMS rMMQaTMYecKon CUCTEMBI
3aBMCHT OT YacTOTbl CEPAEYHbIX COKPALLEHWUHA, YPOBHA BHYTPMYEPENHOrO, MyNbCOBOr0 U apTepUanbHOr0 AaBeHMs, a TaKke
oT (ha3bl apixaTenibHoro uukna. Kpome Toro, Ha paboTy rammdaTnyeckoil CUCTEMBI OKa3bIBalOT HEMOCPEACTBEHHOE BIIUSHUE
KauyecTBO CHa, NMOJIOXEHME ro10BbI BO BpEMS CHa M TOKCUYECKMWE BeLLecTBa, NoTpebnsieMble YenosekoM. B 063ope npueepe-
Hbl «CBEXME» AaHHbIE 0 FMUMGbATUYECKON cUCTeMe opraHoB 3peHus. [anbHeliwne uccnefoBaHns MopdodYHKLUMOHANBHBIX
0C0b6eHHOCTEN rMUMPaTUHECKON CUCTEMBI B HOPMe MOTYT CYLLLECTBEHHO pacLuMpuTb GyHAAMEHTaNbHbIe NpefCTaBIeHNs 0 na-
ToreHe3e 3aboneBaHWi, a Takxke cnocobcTBoBaTh pa3paboTke METOLOB WX NeYeHUs U NPOGUNIAKTUKM.

KnioueBble cnoBa: rnMbaTiyecKas cucTeMa; nepuBacKynspHoe NPOCTPaHCTBO; NPOCTpaHCTBO BupxoBa—PobuHa; nuksop.
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INTRODUCTION

Neurosciences remain a top priority in modern
research. Research into the etiology and pathogenesis of
neurodegenerative diseases, as well as the search for
treatment options, is particularly relevant because of the
aging population and the tendency to remain socially and
professionally active in older age, characteristic of developed
countries. For a long time, it was believed that the central
nervous system (CNS) lacked a network of lymphatic
capillaries, with metabolic products draining from the
cerebral interstitial fluid into the ventricular system containing
cerebrospinal fluid (CSF). However, this explanation was
not convincing enough because the ventricular wall area is
relatively small compared with the brain parenchyma, and
the CNS is one of the most metabolically active systems in
the human body. In 2015, Louveau et al. [1] and Aspelund
et al. [2] first described lymphatic vessels in the dura
mater alongside the venous sinuses in mice and humans.
However, Iliff et al. [3, 4] formulated the main concepts
of the “glymphatic system” hypothesis back in 2012. They
described a unique system of paravascular channels formed
by astroglial cells. These channels facilitate the efficient
removal of soluble proteins and metabolites from the CNS
parenchyma.

Another theory of the glymphatic system structure
suggests that interstitial fluid in the brain parenchyma
flows retrograde into the bloodstream through perivascular
spaces within the basement membrane stratification
of smooth muscle cells in the middle layer of vascular
walls [5-8]. The development of the glymphatic system
is assumed to be closely related to the formation of the
lymphatic channel, which is stimulated by the signaling
cascade of vascular endothelial growth factor C / vascular
endothelial growth factor receptor 3 (VEGF-C/VEGFR-3)
during embryogenesis. This assumption is based on the
finding that transgenic mice with disrupted VEGF-C/VEGFR-3
signaling exhibited impaired development and function
of meningeal lymphatic vessels and dysfunctional CNS
glymphatic clearance [9].

The importance of the glymphatic system cannot be
overestimated. Since its discovery, it has become apparent
that this system plays a critical role in clearing proteins
produced by cellular metabolism from the brain parenchyma.
For example, beta-amyloid, alpha-synuclein, and tau
proteins play key roles in the pathogenesis of Alzheimer
disease, Parkinson disease, and other neurodegenerative
disorders [10, 11]. The exchange between tissue and CSF
facilitates the removal of this so-called metabolic waste [12].
Gymphatic clearance is thought to significantly impact the
distribution of glucose, lipids, amino acids, growth factors,
and neuromodulators in the brain [4, 9]. Given the high
density of lipoproteins and lipid transporters associated with
astrocytes, the glymphatic system also contributes to lipid
transport and glucose uptake [10, 13].
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In addition to clearance, the glymphatic system modulates
intracranial pressure in cases of excess interstitial fluid in
the brain [10, 14]. It is known that increased fluid pressure
stimulates calcium flux through N-methyl-D-aspartate
(NMDA) receptors in astrocytes, which plays a role in signal
transmission [10, 15].

For modern neuroscience, it is crucial to investigate
the morphology and function of the glymphatic system, as
well as the factors that contribute to or interfere with its
effective functioning. A healthy glymphatic system delays
the accumulation of metabolic waste and specific proteins
in the brain. However, glymphatic system dysfunction plays
a key role in the early degeneration of brain parenchyma [16].

STRUCTURE OF THE GLYMPHATIC SYSTEM

Our knowledge about the glymphatic system has improved
greatly since its discovery. However, a review of numerous
publications on this topic revealed significant discrepancies
in the terminology. There are two main theories of the CSF
outflow. The paravascular theory describes the drainage of
interstitial fluid through slit-like channels located between
the walls of blood vessels and adjacent brain tissue, also
known as Virchow—Robin spaces. The perivascular theory
considers the CSF flow through channels formed by the
middle layer of the arterial wall, the basement membranes of
single smooth muscle cells of arterioles, and the basement
membranes of endothelial cells of capillaries. The two terms
are often used interchangeably in most foreign papers [15—
22], which makes it difficult to clearly define and determine
the relationship between these two mechanisms. However,
it is clear that an unambiguous understanding of the basic
mechanisms of the glymphatic system is required to develop
new strategies to improve them.

This review describes two non-mutually exclusive
theories of the CSF outflow from the brain parenchyma.
This article considers drainage through the Virchow—Robin
spaces as part of the paravascular theory, consistent with
other authors’ approach [6, 9]. Notably, some works [5]
describe Virchow—Robin spaces in terms of the perivascular
theory and report terminological discrepancies in the current
scientific discourse.

Paravascular Theory

The paravascular theory describes the glymphatic system
as a network of extravascular channels that circulate CSF
and interstitial fluid within the brain parenchyma, as well as
provide their inflow and outflow (Fig. 1) [15, 17-21, 23, 24].

According to this theory, fluid transport includes five
steps [17]:

« CSF is produced by the choroid plexus, as well as by
extrachoroidal sources, such as capillary inflow and
metabolic fluid production.

» The CSF moves deeply into the brain through the
paravascular spaces (Virchow—Robin spaces) under
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Fig. 1. Structural differences in the pial environment of basal ganglia arteries and cortical arteries: @ — arteries of the basal ganglia are covered by
two layers of the pia mater, whereas veins are covered only by the outer layer; region 2 indicates the area shown in greater detail in part b; AQP4 —
aquaporin-4; ¢ — cortical artery is covered by only one layer of the pia mater. Cortical arteries communicate with the subpial space and indirectly with
the subarachnoid space. Original illustration by the authors, part b adapted with modifications from Peng S et al., 2023 [24].

the pulsation of the arterial wall. The paravascular
spaces, which have an outer border formed by astrocyte
endfeet that express aquaporin-4 (AQP4), are filled with
fluid and surround pial arteries, precapillary arterioles
that extend from the subarachnoid space deep into
the brain parenchyma, and pial postcapillary venules
and veins that extend from the parenchyma [18]. At
the capillary level, the Virchow—Robin spaces are
closed due to the fusion of the basement membranes
of endothelial and glial cells [19]. The pia mater
surrounding the arteries extends into the paravascular
spaces, where it becomes fenestrated and ultimately
disappears at the precapillary segment of the
vessels [19]. There are some structural differences in
the pia mater surrounding the basal ganglia arteries
and cortical arteries. The vessels are covered by two
layers of the pia mater (outer and inner) in the first
case and by one layer in the second case. As a result,
the cortical arteries communicate directly with the
subpial space and indirectly with the subarachnoid

00l https://doiorg/ 10.17816/morph 642000

space [25]. A similar structure is characteristic of the
basal ganglia veins, which only have the outer layer of
the pia mater [19].

+ The CSF enters the brain parenchyma through AQP4
channels and disperses within the neuropil.

+ The CSF mixes with the interstitial fluid.

+ Before leaving the brain parenchyma, interstitial fluid
accumulates in the paravenous space.

Aquaporin Channels

Recent data show that aquaporin channels (aquaporins)
play a key role in the selective permeability of neuronal
membranes to water and dissolved substances, as well
as create an osmotic gradient. Therefore, aquaporins are
involved in the circulation of the CSF and interstitial fluid
through the paravascular spaces of the brain.

Three types of aquaporins have been found in the brain:
AQP4 [23], AQP1 [26], and AQP9 [27]. AQP4 is a homologous
tetramer consisting of monomers that act as independent
water molecular channels on the cell membrane. The
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Fig. 2. Structure of the aquaporin-4 monomer: the protein spans the membrane six times, forming two intramembrane and three extramembrane loops.

Adapted with modifications from Peng S et al., 2023 [24].

two subtypes of aquaporin-4, AQP4-M1 and AQP4-M23,
are expressed at the highest levels in the brain tissue.
The molecular weight of the monomer is approximately
30 kDa. Each monomer crosses the membrane six times,
forming three extramembrane and two intramembrane
rings (Fig. 2) [24].

AQP4 is predominantly located in cell membranes at the
interface of the brain parenchyma and the CSF components.
For example, it is found in astrocyte podocytes adjacent to
microvascular endothelial cells, as well as on the basal side
of ependymal cell membranes in ventricles and membranes
of brain microvascular endothelial cells [24]. This distribution

Artery

of AQP4 suggests that it may play a role in regulating the
inflow and outflow of CSF in the CNS [24].

Perivascular Theory

The perivascular theory (Fig. 3) describes an alternative
way for removing CSF from the brain. Carare et al. [6]
injected dextran (3 kDa) and ovalbumin (49 kDa) into the gray
matter of the putamen of mice. Five minutes after injection,
the markers were detected in the intercellular substance,
where they spread diffusely, as well as in the blood vessel
walls. The markers were found with laminin in the basement
membranes of capillaries and between the smooth muscle

ey Direction of blood flow
———> Direction of cerebrospinal fluid flow

Arteriole

L Capillary

Fig. 3. Cerebrospinal fluid flow through perivascular spaces: the direction of cerebrospinal fluid flow is opposite to that of blood flow; cerebrospinal fluid
flow moves along the basal membranes between endothelial cells of capillaries, single smooth muscle cells of arterioles, and between layers of smooth

muscle cells in arteries. Original illustration by the authors.
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cells of artery media [6, 7]. Furthermore, the injected
substances were not found in the perivascular spaces of
the veins [5]. Thirty minutes after injection, the markers
were no longer present in the intercellular substance of
the brain or the basement membranes of blood vessels,
such as capillaries and arterioles. However, they remained
in perivascular macrophages [6]. Twenty-four hours after
injection, perivascular macrophages outlined the CSF outflow
pathway near the intracerebral and pial arteries [6].

The CSF has been found to flow through perivascular
spaces in the opposite direction of paravascular CSF flow and
blood flow [5]. Injecting dextran and ovalbumin of different
molecular weights into the brain parenchyma of mice showed
that perivascular flow moves outward [6]. However, injecting
dextrans with molecular weights of 3 kDa and 2000 kDa into
the cisterna magna of a mouse’s brain revealed that the
CSF flows through the paravascular spaces in the opposite
direction [3].

Mathematical modeling shows that counter-reflected
waves, which arise after each pulse wave and propagate in
the opposite direction, can drive the perivascular transfer of
the CSF with substances dissolved in it [8]. However, in vivo
experiments revealed an extremely low flow rate of the CSF
through the perivascular spaces [28]. This is likely caused by
their smaller size (100 nm) compared with the paravascular
spaces (40 pm) and, consequently, by approximately 108
times lower volumetric flow rate of the CSF [29]. Therefore,
the paravascular mechanism plays a more significant role in
the functioning of the glymphatic system.

DIRECTION OF THE CEREBROSPINAL
FLUID OUTFLOW FROM THE BRAIN

Scientific publications have described several pathways
for the CSF outflow from the brain. At the end of the
19th century, studies were conducted on cadaver material
stained using methylene blue dye (by Richardson technique).
They showed that the CSF outflow may be directed into the
venous sinuses through arachnoid granulations, as well as
into the lymphatic vessels of the nasal submucosa [30].

Later studies [31] traced the CSF flow through the
cribriform plate along perineural pathways. Studies
on rodents in 2006 [32] showed that the perineural CSF
outflow is possible due to the presence of labyrinthine canals
between the olfactory filaments and the periosteum of the
ethmoid bone. These canals result from the transition of the
dura mater into the periosteum of the cribriform plate and
the arachnoid mater into the perineurium [32]. A 2020 study
found that only 2 out of 18 participants had a perineural
pathway for CSF flow through the cribriform plate,
suggesting that this mechanism is secondary [33]. Ringstad
and Eide proposed that this difference may be caused by the
fact that the human olfactory system is less developed than
that of rodents. In addition, research has shown that both
humans and animals have a perineural pathway for the CSF

Vol. 163 (2) 2025

00l https://doiorg/ 10.17816/marph 642000

Morphology

outflow through openings in the cranial base, including the
hypoglossal canal and the jugular foramen [33].

The discovery of meningeal lymphatic vessels in 2015
led to a reassessment of ideas about the anatomical
pathways for the CSF outflow from human brain tissue [1].
The meningeal lymphatic vessels are located between the
wall of the superior sagittal sinus and the parasagittal
dura mater that serves as a link between the subarachnoid
space and the lymphatic vessels of the dura mater and an
important pathway for the CSF outflow from the brain [33].
The CSF enters the parasagittal dura mater itself through the
arachnoid granulations.

A 2023 study used intravenous gadolinium-based contrast
agents (GBCAs) to visualize the perisinusoidal lymphatic
vessels of the dura mater near the sigmoid and transverse
sinuses. It should be noted that the expansion of meningeal
lymphatic vessels along the sigmoid sinus occurred when
GBCA elimination was delayed and outflow of substances
from the interstitial space was impaired [34].

The deep cervical lymph nodes play a key role in
regulating the immune response of the CSF circulating in
the brain. Their connection to the subarachnoid space was
first demonstrated in the 19th century by injecting methylene
blue using the Richardson technique into the subarachnoid
space [30]. In the 20th century, red blood cells were found
in the deep cervical lymph nodes of a patient who died from
a subarachnoid hemorrhage [35]. Another study found that
patients who died from brain hemorrhage had significantly
higher iron content in their deep cervical lymph nodes than
patients without brain lesions [36].

A 2018 study used magnetic resonance imaging with the
intrathecal contrast enhancement with gadobutrol as a CSF
tracer to demonstrate glymphatic drainage of CSF from the
brain to the deep cervical lymph nodes [37].

CHARACTERISTICS OF THE REGULATION
OF THE GLYMPHATIC SYSTEM

Some studies have been conducted to determine the
regulatory patterns of individual glymphatic system links.
The velocity of CSF flow in the paravascular space has been
shown to correlate with blood flow velocity. This indicates
that the periodic increases and decreases in the CSF
flow velocity are synchronized with phases of the cardiac
cycle [20, 21]. Peaks in velocity are associated with cardiac
output. In other words, the pulse wave that propagates along
the arteries is the main driving force of the CSF inflow. In
fact, the displacement of the arterial wall when a pulse wave
passes corresponds to the pattern of CSF movement in terms
of velocity and timing, suggesting that the CSF moves through
paravascular spaces when the arterial wall stretches during
pulse wave propagation [20, 21]. The correlation between the
cardiac cycle and CSF movement in the paraarterial spaces
is also confirmed by the fact that changes in the general
hemodynamics resulting from pharmacological effects
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impact CSF circulation. For example, in rats, administration
of dobutamine, a beta1-adrenergic receptor agonist, has been
shown to increase heart rate and cardiac output, as well as
stimulate the CSF flow into the paravascular spaces [15, 21].
The use of angiotensin Il causes hypertension by narrowing
the arteries, but reduces the rate of CSF inflow [21].
Therefore, the effects of the pulse wave on CSF movement
depend on the heart rate, blood pressure, pulse pressure,
and fluctuations in intracranial pressure. The isolated effects
of each factor on CSF movement through the paravascular
spaces have not been thoroughly studied [20, 21]. Notably,
the respiratory cycle also modulates the size of the lumen
of the arterial paravascular space [15, 20, 21]. Depending on
the respiratory rhythm, the centripetal flow of venous blood
can increase the volume of veins and stimulate glymphatic
outflow [38]. However, the cardiac cycle makes the most
significant contribution to regulating CSF circulation in the
glymphatic system [20].

GLYMPHATIC SYSTEM AND SLEEP

Sleep is known to play a key role in metabolite
elimination [22]. The volume of the interstitial space
increases by 60% during sleep. This increases the efficiency
with which the interstitial fluid transitions into the CSF, as
well as the elimination rate of beta-amyloid [39]. The effect
of sleep on glymphatic clearance was first investigated in
2013 [39]. The work used in vivo two-photon imaging to
compare the CSF flow into the cerebral cortex of awake,
sleeping, and anesthetized mice [39]. The mice were injected
with dextran, an indicator with a molecular weight of 3 kDa.
Then, electrocorticography and electromyography were
performed to monitor brain activity continuously. Dextran
was administered during daylight via a cannula implanted
in the cisterna magna of the brain because mice primarily
sleep during the day. A strong influx of the fluorescent
indicator was noted in the periarterial spaces, subpial areas,
and brain parenchyma of sleeping and anesthetized mice
with slow-wave sleep and delta waves. The mice were
awakened by touching their tails. After awakening, there was
a sharp decrease (by 95%) in the dextran influx into brain
tissue, associated with a strong decrease in delta waves.
A similar experiment was later conducted in the evening
when mice are usually awake. This experiment showed
a complete absence of the CSF entering the brain tissue. It
should be noted that the CSF flow through the paraarterial
spaces increased significantly under anesthesia [39]. The
experimental results concluded that changes in glymphatic
transport are associated with the state of consciousness,
rather than with circadian rhythms [21, 39].

However, more recent studies have demonstrated
that circadian rhythms also contribute to the regulation of
glymphatic clearance [40], and differences in the function
of the glymphatic system in rodents depend not only on
state of arousal, but also on circadian rhythm. Even after
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10 days of constant light exposure, the patterns of the
CSF influx, clearance of substances, and AQP4 expression,
are maintained, suggesting the circadian control of the
glymphatic system. This control is maintained by regulating
AQP4 polarization (the position of aquaporins in astrocyte
membranes). There was no difference in CSF flow between
day and night in AQP4 knockout (AQP4 KO) animals [40].

The differences in glymphatic system activity during sleep
and wakefulness are related to hemodynamic characteristics.
For example, during non-rapid eye movement (NREM) sleep,
fluctuations in cerebral blood flow volume have a much
greater amplitude than during wakefulness [21, 41].

Turner et al. [41] evaluated behavior and measured
neural activity, blood volume, and arteriolar dilation in head-
fixed mice while they were awake and during NREM and
rapid eye movement (REM) sleep. The authors discovered
that arteriolar dilation and blood volume fluctuations during
NREM and REM sleep phases can be 2-5 times greater
than in awake animals. This increases blood flow, allowing
more CSF to enter the brain during sleep than during the
awakening period. In animals with Parkinson disease and
Alzheimer disease, long-term stimulation of slow-wave
sleep improves glymphatic transport, increases paravascular
AQP4 expression, and reduces the accumulation of alpha-
synuclein and beta-amyloid. Epidemiologists report that the
importance of proper sleep habits is also illustrated by the
direct correlation between frequent benzodiazepine use,
which suppresses slow-wave sleep, and the development
of dementia [38].

Notably, the position of the head during sleep also affects
the function of the glymphatic system. Dynamic contrast-
enhanced magnetic resonance imaging revealed that contrast
agent retention in the interstitium is lower, or clearance is
better, in the lateral position than in the supine position
in mice [42]. In addition, an increased flow of fluorescent
CSF markers into the brain was observed in the lateral
position [42]. Therefore, postural and gravitational factors
are also involved in regulating glymphatic clearance [15].

Sleep disturbances are associated with various chronic
diseases, such as Alzheimer disease, Parkinson disease,
multiple sclerosis, and traumatic brain injury [21, 43-46].
The causal relationship between sleep disorders and
neurodegenerative diseases is not fully understood. However,
it has been noted that sleep problems often precede the onset
of these diseases, and poor sleep is also considered a risk
factor for Alzheimer disease.

GLYMPHATIC SYSTEM AND AGING

The duration and quality of sleep decreases with age. This
negatively affects the efficiency of the glymphatic system [47].
Since poor sleep quality can inhibit glymphatic clearance,
which is a potential risk factor for some neurodegenerative
diseases, aging itself can be considered a key factor in the
development of many neurological disorders [21].
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In 2014, data was obtained showing a decrease in the
CSF inflow into the paravascular spaces and a decrease in
the transpial CSF flow in middle-aged and older animals
compared with young animals. This decrease is associated
with a 40% reduction in the elimination rate of beta-amyloid
from the brains of aging rodents [47].

Two main factors that cause age-related suppression of
the glymphatic system have been identified: mislocalization
of AQP4 in astrogliosis and decreased arterial wall elasticity
with increased cerebral artery rigidity [47, 48]. These
processes independently reduce fluid transport through
astrocyte endfeet into the brain interstitium and decrease
the efficiency of pumping the CSF from the para-arterial
space by weakening arterial wall pulsations [47-49]. Altered
expression of astroglial AQP4 has also been detected in aging
human brains [50].

GLYMPHATIC SYSTEM
AND THE EFFECTS OF ALCOHOL

Available research data shows that alcohol affects the
glymphatic system in two ways. A study in mice showed that
acute and chronic exposure to etanol at 1.5 g/kg (equivalent
to the level of binge drinking) significantly suppressed
the glymphatic system function [51]. In addition, chronic
exposure to this level of ethanol increases the expression of
the glial fibrillary acidic protein (GFAP) gene, thereby increasing
the amount of GFAP protein in astrocyte membranes, leading
to the abnormal distribution of AQP4 aquaporins [52].

Notably, acute exposure to a low dose of ethanol
(0.5 g/kg) improved the glymphatic system function in mice,
while chronic exposure to the same dose over one month
reduced GFAP expression [51]. It was also found that low
doses of alcohol significantly increase the movement of the
fluorescent marker toward paravascular spaces and promote
its clearance from brain tissue [53]. Two-photon linear
scanning demonstrated that higher marker accumulation
in paravascular spaces is associated with substantial
vasodilation caused by elevated nitric oxide (NO) levels [53].

Therefore, consuming small amounts of alcohol can
potentially benefit the glymphatic system, while long-term
excessive consumption can suppress its function [54].

GLYMPHATIC SYSTEM OF THE EYE

It was previously believed that the eyes, like the brain,
lacked typical lymphatic vessels. However, the production
of beta-amyloid and tau protein by electrically active retinal
neural tissues has prompted some experimental works to
identify an intraocular glymphatic/lymphatic system that
could remove these metabolites.

Wang et al. [55] injected HiLyte-594-tagged human beta-
amyloid (hAB) into the vitreous body of mice and visualized
ultimate three-dimensional (3D) imaging to evaluate its
location within the eyeball [55]. The study showed that hAB
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is transported from the vitreous body through the paravenous
space of the optic nerve, along axons, and out through the
orbital and meningeal lymphatic vessels located in the outer
layer of the dura mater that covers the optic nerve [55]. In
addition, the absence of AQP4 was shown to decrease the
clearance of hAp along the optic nerve.

Therefore, the structural and functional characteristics of
the glymphatic system in the eye are similar to those in the
brain. AQP4 plays a key role in its function. It is expressed
on astrocytes in the paravascular spaces of the optic nerve.
The transport of CSF occurs through paravenous and
paraarterial spaces. However, because of unique structural
and functional organization of the eyes and brain, there are
differences in glymphatic clearance between these two
organs [56]. Fluid flow from the eye along the optic nerve
is driven by translaminar pressure (the difference between
intraocular and intracranial pressure). The plate between the
retina and the optic nerve serves as a semipermeable barrier
that allows certain substances, such as B-amyloid, to pass
through [56, 571. Various factors influence the clearance of
beta-amyloid. An increase in intracranial pressure reduces
clearance, while a decrease has the opposite effect [55].
In addition, light-induced pupillary constriction has been
shown to positively impact ocular glymphatic clearance [55].

As mentioned above, the efficiency of anterograde
glymphatic clearance (the removal of metabolites from
the eye) depends on both the pupillary response and
translaminar pressure. A decrease in intraocular pressure
reduces anterograde glymphatic clearance [57]. In addition,
an association was discovered between the optic disc edema
and decreased intraocular pressure resulting from short
sleep duration [57]. The highest intraocular and translaminar
pressure is observed during the slow-wave phase, indicating
the important role that proper sleep structure plays in the
effective functioning of the glymphatic system.

Given the functional relationship between the glymphatic
system and intraocular pressure regulation, impaired
glymphatic clearance could significantly contribute to
the development of glaucoma and age-related macular
degeneration [55, 58, 59]. Research into the glymphatic
system of the eye is important for developing treatment and
prevention options for diseases associated with impaired
function of this system.

CONCLUSION

Although the glymphatic system was discovered relatively
recently, research over the past decade has demonstrated its
crucial role in maintaining brain tissue homeostasis. First,
the components of the glymphatic system provide clearance
of metabolites. The accumulation of these metabolites leads
to neurodegenerative diseases. Furthermore, the glymphatic
system modulates intracranial pressure and transports
lipids and glucose. Its mechanisms of functioning are not
fully understood. The data provided in foreign and Russian
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publications are sometimes controversial, and discrepancies
in terminology is also observed [9, 60—62]. This review closely
evaluates two theories of the CSF outflow. The paravascular
theory describes the drainage of interstitial fluid through the
Virchow—Robin spaces in the direction of blood flow. In
contrast, the perivascular theory states that CSF flows in the
opposite direction through channels formed by the middle
layer of arteries, the basement membranes of single smooth
muscle cells of arterioles, and the basement membranes of
endothelial cells of capillaries. In addition, the CSF flow from
the subarachnoid space into the meningeal lymphatic vessels
through the parasagittal dura mater is described.

The article presents data on the regulation of the
glymphatic system and its relationship with wakefulness,
age, circadian rhythms, and alcohol consumption. New data
on the morphology of the glymphatic system of the eyes
is also reported. The normal functioning of this system
is associated with reference values of intraocular and
intracranial pressure.

Further research in this area will contribute to our basic
understanding of the mechanisms of neurodegenerative
diseases, as well as the potential to modulate glymphatic
system functions. This research will also evaluate the
state of the glymphatic system in organic disorders,
traumatic brain injuries, and strokes in order to develop
appropriate treatment options. Understanding how lifestyle,
genetic status, and medication influence the functioning of
the glymphatic system will help develop new preventive
and diagnostic tools for neurosurgery, pathology, neurology,
anesthesiology, resuscitation, and psychiatry.
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