临床前形态学和分子遗传学研究中肝硬化形成的数学模型

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。目前,研究人员描述了纤维化和肝硬化新疗法开发过程中存在的问题:实验模型质量差、试验时间不足以及缺乏治疗反应标志物。另一个挑战是临床前试验中肝硬化形成过程的标准化,这对于在短时间内获得准确的定量估计是必要的。

这项工作的目的是在临床前试验中建立肝硬化形成的数学模型。

材料和方法。用新鲜制备的硫代乙酰胺溶液诱导雄性 Wistar 大鼠肝纤维化和肝硬化 17 周。测定纤维结缔组织面积占图像面积的百分比。间隔静脉的面积以 μm2 为单位。计数表达 FAP 标记和 α-SMA 标记的细胞数量。通过实时聚合酶链反应评估 Vegfa 和 Yap1 基因的 mRNA 表达水平。通过逐步选择预测因子的多元逻辑回归,构建了一个数学模型,将观察结果分为不同阶段,然后根据 ROC 分析计算灵敏度、特异性和曲线下面积(AUC)以及 95% 的置信区间。

结果。我们建立了一个肝硬化形成的数学模型。该模型基于两个指标值(FAP+ 细胞和 Yap1 mRNA), 具有良好的形态学和分子遗传学质量。ROC 曲线下的面积值为 0.883,表明病例分类结果良好。

结论。该数学模型使得在临床前研究中区分肝硬化阶段和肝纤维化阶段成为可能。这将成为研究肝纤维化和肝硬化发病机制、确定抗纤维化治疗新的潜在分子靶点以及减少昂贵、耗时的实验室检测次数的基础。

全文:

受限制的访问

作者简介

Elena I. Lebedeva

Vitebsk State Order of Peoples’ Friendship Medical University

Email: lebedeva.ya-elenale2013@yandex.ru
ORCID iD: 0000-0003-1309-4248
SPIN 代码: 4049-3213

Cand. Sci. (Biology), Assistant Professor

白俄罗斯, 27 Frunze avenue, 210009 Vitebsk

Anatoliy T. Shchastniy

Vitebsk State Order of Peoples’ Friendship Medical University

Email: rectorvsmu@gmail.com
ORCID iD: 0000-0003-2796-4240
SPIN 代码: 3289-6156

MD, Dr. Sci. (Medicine), Professor

白俄罗斯, 27 Frunze avenue, 210009 Vitebsk

Andrei S. Babenka

Belarusian State Medical University

Email: labmdbt@gmail.com
ORCID iD: 0000-0002-5513-970X
SPIN 代码: 9715-4070

Cand. Sci. (Chemistry), Assistant Professor

白俄罗斯, Minsk

Victor N. Martinkov

Republican Research Centre for Radiation Medicine and Human Ecology

Email: martinkov@rcrm.by
ORCID iD: 0000-0001-7029-5500
SPIN 代码: 4319-8597

Cand. Sci. (Biology), Assistant Professor

白俄罗斯, Gomel

Dmitry A. Zinovkin

Gomel State Medical University

Email: zinovkin_da@gsmu.by
ORCID iD: 0000-0002-3808-8832
SPIN 代码: 1531-9214

Cand. Sci. (Biology), Assistant Professor

白俄罗斯, Gomel

Eldar A. Nadyrov

Gomel State Medical University

编辑信件的主要联系方式.
Email: nadyrov2006@rambler.ru
ORCID iD: 0000-0002-0896-5611
SPIN 代码: 8176-2029

MD, Cand. Sci. (Medicine), Assistant Professor

白俄罗斯, Gomel

参考

  1. Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis — aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20(6):388–398. doi: 10.1038/s41575-023-00759-2
  2. Jangra A, Kothari A, Sarma P, et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. doi: 10.3390/cells11091500
  3. Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye. Hepatol Forum. 2023;4(1):40–46. doi: 10.14744/hf.2022.2022.0045
  4. Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 2023;24(11):9671. doi: 10.3390/ijms24119671
  5. Liu C, Hou X, Mo K, et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal. 2022;36(10):e24658. doi: 10.1002/jcla.24658
  6. Guindi M. Liver fibrosis: the good, the bad, and the patchy-an update. Hum Pathol. 2023;141:201–211. doi: 10.1016/j.humpath.2023.01.002
  7. Kolaric TO, Kuna L, Covic M, et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update. Curr Issues Mol Biol. 2023;45(5):4246–4260. doi: 10.3390/cimb45050270
  8. Krylov DP, Rodimova SA, Karabut MM, et al. Experimental models for studying structural and functional state of the pathological liver (review). Sovremennye tehnologii v medicine. 2023;15(4):65. doi: 10.17691/stm2023.15.4.06
  9. Lee HJ, Mun SJ, Jung CR, et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng. 2023;120(5):1241–1253. doi: 10.1002/bit.28333
  10. Lee YS, Seki E. In vivo and In vitro models to study liver fibrosis: mechanisms and limitations. Cell Mol Gastroenterol Hepatol. 2023;16(3):355–367. doi: 10.1016/j.jcmgh.2023.05.010
  11. Lebedeva EI, Shchastniy AT, Babenka AS. Model of toxic fibrosis in Wistar rats: morphological and molecular-genetic parameters of the transition point to cirrhosis. Genes & cells. 2023;18(3):219–234. EDN: HTSXYA doi: 10.23868/gc546031
  12. Krasochko PA, Shchastniy AT, Lebedeva EI, et al. Methodological recommendations for creating an experimental model of toxic fibrosis and cirrhosis induced by thioacetamide. Minsk: Republican Unitary Enterprise “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”; 2021. 13 p. (In Belarus.) E DN: ZNOOHG
  13. Lebedeva EI, Krasochko PA, Shchastniy AT, et al. Recommendations for assessing the progression and regression of toxic liver fibrosis in preclinical studies. Minsk: “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”, 2023. 8 p. (In Belarus.) EDN: LSMJUD
  14. Lay AJ, Zhang HE, McCaughan GW, Gorrell MD. Fibroblast activation protein in liver fibrosis. Front Biosci (Landmark Ed). 2019;24(1):1–17. doi: 10.2741/4706
  15. Yang AT, Kim YO, Yan XZ, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005
  16. Shi Y, Kong Z, Liu P, et al. Oncogenesis, microenvironment modulation and clinical potentiality of fap in glioblastoma: lessons learned from other solid tumors. Cells. 2021;10(5):1142. doi: 10.3390/cells10051142
  17. Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344
  18. Lin Y, Dong MQ, Liu ZM, et al. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology. 2022;76(3):660–675. doi: 10.1002/hep.32299
  19. Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020:78:153294. doi: 10.1016/j.phymed.2020.153294
  20. Dai Y, Hao P, Sun Z, et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J Endocrinol. 2021;249(2):149–161. doi: 10.1530/JOE-20-0561
  21. Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol. 2022;600(8):1825–1837. doi: 10.1113/JP281061
  22. O’Hara SP, LaRusso NF. Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 2022;76(5):1240–1242. doi: 10.1002/hep.32528
  23. Kim HY, Sakane S, Eguileor A, et al. The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 2023; 17(1):93–106. doi: 10.1016/j.jcmgh.2023.09.008
  24. Wu Y, Li Z, Xiu AY, et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des Devel Ther. 2019;13:2667–2676. doi: 10.2147/DDDT.S210797
  25. Sato K, Marzioni M, Meng F. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology. 2019;69(1):420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019;70(3):1089. doi: 10.1002/hep.30878
  26. Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol. 2021;12:671640. doi: 10.3389/fphar.2021.671640
  27. Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(3):217–233. doi: 10.1080/17474124.2021.1842732
  28. Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344
  29. Zhang W, Han L, Wen Y, et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury. Brain Behav. 2023;13(3):e2912. doi: 10.1002/brb3.2912
  30. Du K, Maeso-Díaz R, Oh SH, et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology. 2023;77(6):1998–2015. doi: 10.1097/HEP.0000000000000326

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Rats' liver after 5 (a, b), 9 (c), 13 (d), 17 (e) weeks after the start of the experiment, quantitative changes in the area of connective tissue: a — fibrous connective tissue septa (arrows); b — perisinusoidal fibrosis (arrows); c — false hepatic lobule (oval frame); d — false hepatic lobules (arrows); e — thick fibrous connective tissue septa (arrow); f — change in the area of connective tissue at different stages of the experiment. Mallory staining; ×100 (d), ×200 (a, c, e, ×400 (b).

下载 (6MB)
3. Fig. 2. Histological preparations of rat liver 13 weeks after the start of the experiment, quantitative changes in the area of interlobular veins: a — venous angiogenesis (arrows); b — interlobular vein (arrow); c — change in the area of interlobular veins at different stages of the experiment. Mallory staining; ×100.

下载 (2MB)
4. Fig. 3. Rats' liver after 13 weeks after the start of the experiment: a — α-SMA⁺ cells (arrows); b — FAP⁺ cells (arrows). Immunohistochemical staining for α-SMA (a); on FAP (b), counterstaining with Mayer's hematoxylin; ×200 (a), ×400 (b).

下载 (1MB)
5. Fig. 4. Change in the number of FAP⁺ (a) and α-SMA⁺ (b) cells at different stages of the experiment.

下载 (543KB)
6. Fig. 5. Changes in the mRNA levels of the Vegfa (a) and Yap1 (b) genes at different stages of the experiment.

下载 (532KB)
7. Fig. 6. ROC curve based on the calculated values of the logistic regression equation.

下载 (387KB)

版权所有 © Eco-Vector, 2024



Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.