胚胎发育和胚后早期发育过程中卵黄合质层 及其微环境的超微结构动态变化 Hemichromis bimaculatus

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。在鱼类胚胎发育过程中,卵黄囊是最重要的辅助器官。其功能活跃期与胚胎和胚后早期发育期一致。该器官的主要功能是营养。在硬骨鱼类(远洋鱼类)中,它的实现与一种特殊的结构--卵黄合质层--有关。

这项研究的目的是调查戴氏绒螯虾(H. bimaculatus)在胚胎和胚后早期发育时期卵黄囊结构组织的特殊性。

材料和方法。该研究针对产卵后第 1 天至第 7 天的 22 枚胚胎和 H. bimaculatus 幼虫进行。使用石蜡和半薄切片光镜以及透射电子显微镜研究了卵黄囊的形态特征。

结果。第 2 天,卵黄囊通过体褶与胚胎物质分离。其主要结构是卵黄合质层,包含大量细胞核、微绒毛、线粒体和吞噬体。卵黄合胞层的形态特征与胎盘合体滋养细胞的形态特征相似,证明其具有很高的功能活性。卵黄囊间质中有血管、迁移的黑色素细胞和肌纤维。外皮覆盖着一层特殊的鞘,是胚胎的主要皮肤。在H. bimaculatus幼虫过渡到外源喂养的过程中,卵黄囊的体积显著缩小,随后内陷。

结论。在胚胎形成和胚后发育过程中,卵黄合质层与器官壁上的许多结构相互作用,从而实现了H. bimaculatus卵黄囊的营养功能。移动的肌肉纤维有助于激活卵黄颗粒。有毒代谢产物的积累与黑素细胞有关。外皮的特殊结构可保护卵黄囊和胚胎本身免受外界影响。

全文:

受限制的访问

作者简介

Natalya N. Dubinina

Novosibirsk State Medical University

Email: anna.dubinina05@gmail.com
ORCID iD: 0009-0000-6725-9445
SPIN 代码: 6724-9437

Cand. Sci. (Biology), Assistant Professor Department of Histology, Embryology and Cytology

俄罗斯联邦, 52 Krasny Prospect, 630091 Novosibirsk

Svetlana Aidagulova

Novosibirsk State Medical University

Email: asvetvlad@yandex.ru
ORCID iD: 0000-0001-7124-1969
SPIN 代码: 5661-9765

Dr. Sci. (Biology), Professor , Head of the Laboratory of Cellular Biology and Fundamental Basis of Reproduction, Central scientific laboratory

俄罗斯联邦, 52 Krasny Prospect, 630091 Novosibirsk

Svetlana Zalavina

Novosibirsk State Medical University

编辑信件的主要联系方式.
Email: zalavinasv@mail.ru
ORCID iD: 0000-0003-3405-5993
SPIN 代码: 8950-8517

MD, Dr. Sci. (Medicine), Assistant Professor

俄罗斯联邦, 52 Krasny Prospect, 630091 Novosibirsk

参考

  1. Ramos I, Machado E, Masuda H, et al. Open questions on the functional biology of the yolk granules during embryo development. Mol Reprod Dev. 2022;89(2):86–94. doi: 10.1002/mrd.23555
  2. Fleig R. Embryogenesis in mouth-breeding cichlids (Osteichthyes, Teleostei) structure and fate of the enveloping layer. Rouxs Arch Dev Biol. 1993;203(3):124–130. doi: 10.1007/BF00365051
  3. Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci. 2022;377(1865):20210264. doi: 10.1098/rstb.2021.0264
  4. Gorodilov YN, Melnikova ЕL. Embryonic development of the European smelt Osmerus eperlanus eperlanus (L.) (Neva population). Russian Journal of Marine Biology. 2006;32(3):173–185. EDN: HZJKFN
  5. Kaufman ZS. Embryologya ryb. Moscow: Agropromizdat; 1990. (In Russ.)
  6. Walzer DC, Schönenberger N. Ultrastructure and cytochemistry of the yolk syncytial layer in the alevin of trout (Salmo fario trutta L. and Salmo gairdneri R.) after hatching. Cell and Tissue Research. 1979;196(1):75–93. doi: 10.1007/BF00236349
  7. Ninhaus-Silveira A, Foresti F, de Azevedo A, et al. Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontidae). Zygote. 2007;15(3):267–271. doi: 10.1017/S0967199407004261
  8. Kondakova EA, Efremov VI, Nazarov VA. Structure of the yolk syncytial layer in Teleostei and analogous structures in animals of the meroblastic type of development. Biology Bulletin. 2016;43(3):208–215. EDN: WVBNMF doi: 10.1134/S1062359016030055
  9. Kondakova EA, Efremov VI, Bogdanova VA. Structure of the yolk syncytial layer in the larvae of whitefishes: A histological study. Russian Journal of Developmental Biology. 2017:48(3):176–184. EDN: XMWZJH doi: 10.1134/S1062360417030055
  10. Kondakova EA, Efremov VI, Kozin VV. Common and specific features of organization of the yolk syncytial layer of Teleostei as exemplified in Gasterosteus aculeatus L. Biology Bulletin. 2019:46(1):26–32. EDN: IYQFJO doi: 10.1134/S1062359019010023
  11. Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development. 1999;126(17):3735–3745. doi: 10.1242/dev.126.17.3735
  12. Sakaguchi T, Kikuchi Y, Kuroiwa A, et al. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development. 2006;133(20):4063–4072. doi: 10.1242/dev.02581
  13. Carter AM. IFPA senior award lecture: mammalian fetal membranes. Placenta. 2016;48 Suppl. 1:S21–S30. doi: 10.1016/j.placenta.2015.10.012
  14. Thowfeequ S, Srinivas S. Embryonic and extraembryonic tissues during mammalian development: shifting boundaries in time and space. Philos Trans R Soc Lond B Biol Sci. 2022;377(1865):20210255. doi: 10.1098/rstb.2021.0255
  15. Dubinina NN, Sklyanov YI, Popp EA, et al. Histogenetic parallels in the differentiation of yolk sac endoderm in some vertebrates. Morphology.2019:156(6):93. EDN: YRNTXT doi: 10.17816/morph.102018
  16. Peterson NG, Fox DT. Communal living: the role of polyploidy and syncytia in tissue biology. Chromosome Res. 2021;29(3–4):245–260. doi: 10.1007/s10577-021-09664-3
  17. Chu LT, Fong SH, Kondrychyn I, et al. Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo. Biol Open. 2012;1(8):747–753. doi: 10.1242/bio.20121636
  18. Carvalho L, Stühmer J, Bois JS, et al. Control of convergent yolk syncytial layer nuclear movement in zebrafish. Development. 2009;136(8):1305–1315. doi: 10.1242/dev.026922
  19. Schwartz LM. Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the myonuclear domain hypothesis. Front Physiol. 2019;9:1887. doi: 10.3389/fphys.2018.01887
  20. Kondakova EA, Shkil FN, Efremov VI. Structure of the yolk syncytial layer during postembryonic development of Andinoacara rivulatus (Günther), 1860 (Cichlidae). Proceedings of the Zoological Institute RAS. 2019;323(4):523–532. EDN: NFAGNN doi: 10.31610/trudyzin/2019.323.4.523
  21. Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: The zebrafish paradigm. Mech Dev. 2013;130(9–10):447–457. doi: 10.1016/j.mod.2013.06.001
  22. Piesiewicz R, Krzystolik J, Korzelecka-Orkisz A, et al. Early ontogeny of cichlids using selected species as examples. Animals (Basel). 2024;14(8):1238. doi: 10.3390/ani14081238
  23. Mikulin AE. Functional significance of pigments and pigmentation in fish. Moscow: VNIRO; 2000. (In Russ.)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Yolk sac of Hemichromis bimaculatus on the 2nd day after egg laying (hematoxylin and eosin staining): a — cross section of the embryo at the gastrula stage, general view; ×100; b — lamellar structure of the yolk; ×400; c — large nuclei of yolk syncytial layer; ×400. Here: ЖМ — yolk sac; Эм — embryo; ПЖ — yolk plates; Я — yolk syncytial layer nuclei. The tips mark the trunk fold.

下载 (756KB)
3. Fig. 2. Yolk sac of the Hemichromis bimaculatus on the 3rd day after egg laying: а — embryo cross section, general view; toluidine blue staining; ×100; b — yolk syncytial layer in contact with the yolk, parasagittal section; hematoxylin and eosin staining; ×400; c — fat droplets, yolk plates, yolk syncytial layer nuclei and migrating melanophores in the organ wall, cross section; toluidine blue staining; ×400; d — the ultrastructure (TEM ) of the yolk syncytial layer; ×4000. Here: ЖМ — yolk sac; Эм — embryo; ПЖ — yolk plates; ЖСС — yolk syncytial layer (cytoplasm); Я — yolk syncytial layer nucleus (indicated by an arrow); ЖК — fat droplet; Мф — melanophore.

下载 (5MB)
4. Fig. 3. The ultrastructure (TEM) of the yolk syncytial layer of the Hemichromis bimaculatus on the 4th day after egg laying (×4000): a — apical surface with microvilli; b — nucleus-containing part; c, d — yolk inclusions, phagolysosomes, myelin bodies and mitochondria in the cytoplasm. Here: ЖВ — yolk inclusions; ЯЖСС — yolk syncytial layer nucleus; Мв — microvilli; Мх — mitochondria; Фл — phagolysosomes; МТ — myelin bodies.

下载 (5MB)
5. Fig. 4. Structural elements of the Hemichromis bimaculatus yolk sac on days 4–5 after egg laying: a — periderm, parasagittal section; hematoxylin and eosin staining; ×400; b — melanophore ultrastructurе; ×4500; c — muscle fibers and melanophores on the organ surface, the cross section; toluidine blue staining; ×400; d — muscle fiber fragment; e, f — ultrastructurе of periderm cells; ×4000. Here: ЖМ — yolk sac; Я — cell nuclei; Мф — melanophore; Пе — periderm; П/ПМТ — striated muscle tissue; Мфбр — myofibril.

下载 (6MB)
6. Fig. 5. Yolk sac of the Hemichromis bimaculatus on the 5–7 day after egg laying: a — embryo cross section (5th day), general view; hematoxylin and eosin staining; ×100; b — yolk structure, parasagittal section; toluidine blue staining; ×400; c — embryo cross section (7th day), general view; hematoxylin and eosin staining; ×100; d — fragment of the ventral part of the embryo; hematoxylin and eosin staining; ×400. Here: ЖМ — yolk sac; ЯЖСС — YSS nuclei (indicated by arrows); Мф — melanophore (indicated by arrow); Пч — liver; Кш — embryonic intestine.

下载 (4MB)
7. Consent to the processing of personal data Dubinina

下载 (1MB)

版权所有 © Eco-Vector, 2024



Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.