胚胎发育和胚后早期发育过程中卵黄合质层 及其微环境的超微结构动态变化 Hemichromis bimaculatus
- 作者: Dubinina N.N.1, Aidagulova S.V.1, Zalavina S.V.1
-
隶属关系:
- Novosibirsk State Medical University
- 期: 卷 162, 编号 2 (2024)
- 页面: 115-126
- 栏目: Original Study Articles
- ##submission.dateSubmitted##: 27.05.2024
- ##submission.dateAccepted##: 17.07.2024
- ##submission.datePublished##: 10.11.2024
- URL: https://j-morphology.com/1026-3543/article/view/632908
- DOI: https://doi.org/10.17816/morph.632908
- ID: 632908
如何引用文章
详细
论证。在鱼类胚胎发育过程中,卵黄囊是最重要的辅助器官。其功能活跃期与胚胎和胚后早期发育期一致。该器官的主要功能是营养。在硬骨鱼类(远洋鱼类)中,它的实现与一种特殊的结构--卵黄合质层--有关。
这项研究的目的是调查戴氏绒螯虾(H. bimaculatus)在胚胎和胚后早期发育时期卵黄囊结构组织的特殊性。
材料和方法。该研究针对产卵后第 1 天至第 7 天的 22 枚胚胎和 H. bimaculatus 幼虫进行。使用石蜡和半薄切片光镜以及透射电子显微镜研究了卵黄囊的形态特征。
结果。第 2 天,卵黄囊通过体褶与胚胎物质分离。其主要结构是卵黄合质层,包含大量细胞核、微绒毛、线粒体和吞噬体。卵黄合胞层的形态特征与胎盘合体滋养细胞的形态特征相似,证明其具有很高的功能活性。卵黄囊间质中有血管、迁移的黑色素细胞和肌纤维。外皮覆盖着一层特殊的鞘,是胚胎的主要皮肤。在H. bimaculatus幼虫过渡到外源喂养的过程中,卵黄囊的体积显著缩小,随后内陷。
结论。在胚胎形成和胚后发育过程中,卵黄合质层与器官壁上的许多结构相互作用,从而实现了H. bimaculatus卵黄囊的营养功能。移动的肌肉纤维有助于激活卵黄颗粒。有毒代谢产物的积累与黑素细胞有关。外皮的特殊结构可保护卵黄囊和胚胎本身免受外界影响。
全文:

作者简介
Natalya N. Dubinina
Novosibirsk State Medical University
Email: anna.dubinina05@gmail.com
ORCID iD: 0009-0000-6725-9445
SPIN 代码: 6724-9437
Cand. Sci. (Biology), Assistant Professor Department of Histology, Embryology and Cytology
俄罗斯联邦, 52 Krasny Prospect, 630091 NovosibirskSvetlana Aidagulova
Novosibirsk State Medical University
Email: asvetvlad@yandex.ru
ORCID iD: 0000-0001-7124-1969
SPIN 代码: 5661-9765
Dr. Sci. (Biology), Professor , Head of the Laboratory of Cellular Biology and Fundamental Basis of Reproduction, Central scientific laboratory
俄罗斯联邦, 52 Krasny Prospect, 630091 NovosibirskSvetlana Zalavina
Novosibirsk State Medical University
编辑信件的主要联系方式.
Email: zalavinasv@mail.ru
ORCID iD: 0000-0003-3405-5993
SPIN 代码: 8950-8517
MD, Dr. Sci. (Medicine), Assistant Professor
俄罗斯联邦, 52 Krasny Prospect, 630091 Novosibirsk参考
- Ramos I, Machado E, Masuda H, et al. Open questions on the functional biology of the yolk granules during embryo development. Mol Reprod Dev. 2022;89(2):86–94. doi: 10.1002/mrd.23555
- Fleig R. Embryogenesis in mouth-breeding cichlids (Osteichthyes, Teleostei) structure and fate of the enveloping layer. Rouxs Arch Dev Biol. 1993;203(3):124–130. doi: 10.1007/BF00365051
- Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci. 2022;377(1865):20210264. doi: 10.1098/rstb.2021.0264
- Gorodilov YN, Melnikova ЕL. Embryonic development of the European smelt Osmerus eperlanus eperlanus (L.) (Neva population). Russian Journal of Marine Biology. 2006;32(3):173–185. EDN: HZJKFN
- Kaufman ZS. Embryologya ryb. Moscow: Agropromizdat; 1990. (In Russ.)
- Walzer DC, Schönenberger N. Ultrastructure and cytochemistry of the yolk syncytial layer in the alevin of trout (Salmo fario trutta L. and Salmo gairdneri R.) after hatching. Cell and Tissue Research. 1979;196(1):75–93. doi: 10.1007/BF00236349
- Ninhaus-Silveira A, Foresti F, de Azevedo A, et al. Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontidae). Zygote. 2007;15(3):267–271. doi: 10.1017/S0967199407004261
- Kondakova EA, Efremov VI, Nazarov VA. Structure of the yolk syncytial layer in Teleostei and analogous structures in animals of the meroblastic type of development. Biology Bulletin. 2016;43(3):208–215. EDN: WVBNMF doi: 10.1134/S1062359016030055
- Kondakova EA, Efremov VI, Bogdanova VA. Structure of the yolk syncytial layer in the larvae of whitefishes: A histological study. Russian Journal of Developmental Biology. 2017:48(3):176–184. EDN: XMWZJH doi: 10.1134/S1062360417030055
- Kondakova EA, Efremov VI, Kozin VV. Common and specific features of organization of the yolk syncytial layer of Teleostei as exemplified in Gasterosteus aculeatus L. Biology Bulletin. 2019:46(1):26–32. EDN: IYQFJO doi: 10.1134/S1062359019010023
- Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development. 1999;126(17):3735–3745. doi: 10.1242/dev.126.17.3735
- Sakaguchi T, Kikuchi Y, Kuroiwa A, et al. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development. 2006;133(20):4063–4072. doi: 10.1242/dev.02581
- Carter AM. IFPA senior award lecture: mammalian fetal membranes. Placenta. 2016;48 Suppl. 1:S21–S30. doi: 10.1016/j.placenta.2015.10.012
- Thowfeequ S, Srinivas S. Embryonic and extraembryonic tissues during mammalian development: shifting boundaries in time and space. Philos Trans R Soc Lond B Biol Sci. 2022;377(1865):20210255. doi: 10.1098/rstb.2021.0255
- Dubinina NN, Sklyanov YI, Popp EA, et al. Histogenetic parallels in the differentiation of yolk sac endoderm in some vertebrates. Morphology.2019:156(6):93. EDN: YRNTXT doi: 10.17816/morph.102018
- Peterson NG, Fox DT. Communal living: the role of polyploidy and syncytia in tissue biology. Chromosome Res. 2021;29(3–4):245–260. doi: 10.1007/s10577-021-09664-3
- Chu LT, Fong SH, Kondrychyn I, et al. Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo. Biol Open. 2012;1(8):747–753. doi: 10.1242/bio.20121636
- Carvalho L, Stühmer J, Bois JS, et al. Control of convergent yolk syncytial layer nuclear movement in zebrafish. Development. 2009;136(8):1305–1315. doi: 10.1242/dev.026922
- Schwartz LM. Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the myonuclear domain hypothesis. Front Physiol. 2019;9:1887. doi: 10.3389/fphys.2018.01887
- Kondakova EA, Shkil FN, Efremov VI. Structure of the yolk syncytial layer during postembryonic development of Andinoacara rivulatus (Günther), 1860 (Cichlidae). Proceedings of the Zoological Institute RAS. 2019;323(4):523–532. EDN: NFAGNN doi: 10.31610/trudyzin/2019.323.4.523
- Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: The zebrafish paradigm. Mech Dev. 2013;130(9–10):447–457. doi: 10.1016/j.mod.2013.06.001
- Piesiewicz R, Krzystolik J, Korzelecka-Orkisz A, et al. Early ontogeny of cichlids using selected species as examples. Animals (Basel). 2024;14(8):1238. doi: 10.3390/ani14081238
- Mikulin AE. Functional significance of pigments and pigmentation in fish. Moscow: VNIRO; 2000. (In Russ.)
补充文件
