Selective hydrogenation of carvone on Pd/Al2O3 under mild reaction conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Liquid-phase hydrogenation of carvone to carveol using Pd/Al2O3 catalyst under mild reaction conditions was studied. Carvone having three different functional groups, is a complex object for selective hydrogenation, since endo- and exo- >C=C< bonds and carbonyl group have different reactivity. The aim of the study was to increase the selectivity for carveol, an important industrial product in the food, perfumery and pharmaceutical industries. Optimum conditions for carvone hydrogenation to carveol were established: toluene solvent, Pd/Al2O3 catalyst and temperatures ≥323 K. It was shown that the selectivity for carveol under mild conditions reaches 20%. The results demonstrate the potential of using Pd/Al2O3 for efficient and selective hydrogenation of carvone in industry. This study can form the basis for the development of new technologies for the production of carveol with high selectivity and yield, which is important for improving the efficiency and sustainability of chemical processes in various industries.

Texto integral

Acesso é fechado

Sobre autores

T. Osadchaya

Ivanovo State University of Chemistry and Technology

Autor responsável pela correspondência
Email: osadchayatyu@gmail.com
Rússia, 153000 Ivanovo

A. Afineevskii

Ivanovo State University of Chemistry and Technology

Email: osadchayatyu@gmail.com
Rússia, 153000 Ivanovo

D. Prozorov

Ivanovo State University of Chemistry and Technology

Email: osadchayatyu@gmail.com
Rússia, 153000 Ivanovo

F. Cardenas-Lizana

Heriot-Watt University

Email: osadchayatyu@gmail.com

Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences (EPS)

Reino Unido da Grã-Bretanha e Irlanda do Norte, Edinburgh EH14 4AS

Bibliografia

  1. Bhatia S.P., McGinty D., Letizia C.S., Api A.M. // Food Chem. Toxicol. 2008. V. 46. № 11. P. S85–S87. https://doi.org/10.1016/j.fct.2008.06.074
  2. Duetz W.A., Fjällman A.H., Ren S., Jourdat C., Witholt B. // Appl. Environ. Microbiol. 2001. V. 67. № 6. P. 2829–2832. https://doi.org/10.1128/AEM.67.6.2829-2832.2001
  3. Costa V.V., da Silva Rocha K.A., de Sousa L.F., Robles-Dutenhefner P.A., Gusevskaya E.V. // J. Mol. Cat. A: Chem. 2011. V. 345. Р. 69–74. https://doi.org/10.1016/j.molcata.2011.05.020
  4. de Miguel S.R, Román-Mart´ınez M.C., Cazorla-Amorós D., Jablonski E.L., Scelza O.A. // Cat. Today. 2001. V. 66. № 2–4. P. 289–295. https://doi.org/10.1016/S0920-5861(00)00657-X
  5. Chapman H.A., Herbal K., Motherwell W.B. // Synlett. 2010. V. 4. № 3. P. 595–598. https://doi.org/10.1055/s-0029-1219373
  6. Stekrova M., Kumar N., Mäki-Arvela P., Ardashov O.V., Volcho K.P., Salakhutdinov N.F., Murzin D.Yu. // Materials. 2013. V. 6. № 5. P. 2103–2118. https://doi.org/10.3390/ma6052103
  7. Anikeev V.I., Sivcev V.P., Il'ina I.V., Korchagina D.V., Statsenko O.B., Volcho K.P., Salakhutdinov N.F. // Russ. J. Phys. Chem. A. 2013. V. 87. № 3. P. 382–387. https://doi.org/10.7868/S0044453713030023
  8. Black P.J. Catalytic electronic activation: The addition of nucleophiles to an allylic alcohol. Doctoral thesis, United Kingdom, University of Bath, 2002. 192 p.
  9. Bicas J.L., Dionísio A.P., Pastore G.M. // Chem. Rev. 2009. V. 109. № 9. P. 4518–4531. https://doi.org/10.1021/cr800190y
  10. Fahlbusch K.-G., Hammerschmidt F.-J., Panten J., Pickenhagen W., Schatkowski D., Bauer K., Garbe D., Surburg H. Flavors and fragrances. In: Ullmann's encyclopedia of industrial chemistry. V. 15. Elvers B., Hawkins S., Russey W. (eds.). Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2003. P. 73–198. https://doi.org/10.1002/14356007.a11_141
  11. Demidova Y.S., Suslov E.V., Simakova O.A., Volcho K.P., Salakhutdinov N.F., Simakova I.L., Murzin D.Y. // J. Mol. Catal. A: Chem. 2016. V. 420. P. 142–148. https://doi.org/10.1016/j.molcata.2016.04.013
  12. Schmidt E., Wanner J. Adulteration of essential oils. In: Handbook of essential oils: Science, technology and application. 3rd Edn. Can Baser K.H., Buchbauer G. (eds.). USA, Boca Raton, CRC Press, 2020. P. 543–580.
  13. Melo C.I., Bogel-Łukasik R., Bogel-Łukasik E. // J. Supercrit. Fluids. 2012. V. 61. P. 191–198. https://doi.org/10.1016/j.supflu.2011.10.005
  14. Montero G.E.R., Stassi J.P., de Miguel S.R., Zgolicz P.D. // React. Chem. Eng. 2023. V. 8. № 12. Р. 3133–3149. https://doi.org/
  15. Samarov A.A., Vostrikov S.V., Glotov A.P., Verevkin S.P. // Chemistry. 2024. V. 6. № 4. P. 706–722. https://doi.org/10.3390/chemistry6040042
  16. Heterogenized homogeneous catalysts for fine chemicals production: materials and processes. V. 33. Barbaro P., Liguori F. (eds.). USA: Boston, Springer, 2010. 470 p. https://doi.org/10.1007/978-90-481-3696-4
  17. Benavente P., Cárdenas-Lizana F., Keane M.A. // Cat. Comm. 2017. V. 96. P. 37–40. https://doi.org/10.1016/j.catcom.2017.03.026
  18. Malkar R.S., Yadav G.D. // Curr. Catal. 2020. V. 9. № 1. P. 32–58. https://doi.org/10.2174/2211544708666190613163523
  19. Vilella I.M.J., de Miguel S.R., Scelza O.A. // J. Mol. Cat. A: Chem. 2008. V. 284. № 1–2. P. 161–171. https://doi.org/10.1016/j.molcata.2008.01.017
  20. Gilbert L., Mercier C. Solvent effects in heterogeneous catalysis: Application to the synthesis of fine chemicals. In: Studies in surface science and catalysis. V. 78. Guisnet M. (ed.). Amsterdam, Elsevier, 1993. Р. 51. https://doi.org/10.1016/S0167-2991(08)63303-0
  21. Wehrli J.T., Baiker A., Monti D.M., Blaser H.U., Jalett H.P. // J. Mol. Cat. 1989. V. 57. № 2. P. 245–257. https://doi.org/10.1016/0304-5102(89)80234-2
  22. Augustine R.L. Advances in catalysis. V. 25. Eley D.D., Selwood P.W., Weisz P.B. (eds.). New York, Academic Press, 1976. P. 56.
  23. Blaser H.U., Jalett H.P., Wiehl J. // J. Mol. Catal. 1991. V. 68. № 2. P. 215–222. https://doi.org/10.1016/0304-5102(91)80076-F
  24. Bertero N.M., Trasarti A.F., Apesteguía C.R., Marchi A. // J. App. Catal. A: Gen. 2011. V. 394. № 1–2. P. 228–238. https://doi.org/10.1016/j.apcata.2011.01.003
  25. Li M., Wang X., Cárdenas-Lizana F., Keane M.A. // Catal. Today. 2017. V. 279. № 1. P. 19–28. https://doi.org/10.1016/j.cattod.2016.06.030
  26. Cárdenas-Lizana F., Lamey D., Gómez-Quero S., Perret N., Kiwi-Minsker L., Keane M.A. // Catal. Today. 2011. V. 173. № l. P. 53–61. https://doi.org/10.1016/j.cattod.2011.03.084
  27. Cárdenas-Lizana F., Hao Y., Crespo-Quesada M., Yuranov I., Wang X., Keane M.A., Kiwi-Minsker L. // ACS Catal. 2013. V. 3. № 6. P. 1386–1396. https://doi.org/10.1021/cs400194
  28. Petrier C., Luche J.-L. // Tetrahedron lett. 1987. V. 28. № 21. P. 2351–2352. https://doi.org/10.1016/S0040-4039(00)96120-3
  29. Li M., Hao Y., Cárdenas-Lizana F., Yiu H.H.P., Keane M.A. // Top. Catal. 2015. V. 58. P. 149–158. https://doi.org/10.1007/s11244-014-0354-9
  30. Molnar A., Sarkany A., Varga M. // J. Mol. Catal. A: Chem. 2001. V. 173. № 1. P. 185–221. https://doi.org/10.1016/S1381-1169(01)00150-9
  31. Shorthouse L.J., Roberts A.J., Raval R. // Surf. Sci. 2001. V. 480. № 1–2. P. 37–46. https://doi.org/10.1016/S0039-6028(01)00991-8
  32. Brunner E. // J. Chem. Eng. Data. 1985. V. 30. № 3. P. 269–273. https://doi.org/10.1021/je00041a010
  33. Saboktakin M.R., Tabatabaie R.M., Maharramov A., Ramazanov M.A. // Synth. Comm. 2011. V. 41. № 10. P. 1455–1463. https://doi.org/10.1080/00397911.2010.486510

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Heats of reaction of carvone reduction. The figure was created based on data from [15].

Baixar (62KB)
3. Fig. 2. Micrographs of the Pd/Al2O3 catalyst (a, b), distribution of Pd particles by diameter (c).

Baixar (461KB)
4. Fig. 3. Dependence of the initial rate of carvone consumption (R) in ethanol at 300 K on the catalyst particle size (upper abscissa axis, ▲) and on the stirring rate (lower abscissa axis, ●) for the reaction on the Pd/Al2O3 catalyst.

Baixar (146KB)
5. Fig. 4. Dependence of the initial rate of liquid-phase hydrogenation of carvone in ethanol on the mass of the catalyst at different temperatures: 273 K (▲), 300 K (■), 323 K (●).

Baixar (72KB)
6. Fig. 5. Temperature-programmed hydrogen desorption profile for the Pd/Al2O3 catalyst: experimental data (a), after baseline subtraction and deconvolution (b). Colored lines 1–7 indicate the different forms of hydrogen participating in the hydrogenation reaction. Data on the forms of adsorbed hydrogen are presented in Table 2. The line numbers correspond to the numbers in Table 2.

Baixar (209KB)
7. Fig. 6. Dependence of the reaction product content on time: ☆ – carvone, ■ – carvomenthone, ● – carvotanacetone, ▲ – carvacrol, ▼ – dihydrocarvone, ♦ – carvomenthol. Reaction conditions: ethanol, 300 K, Pd/Al2O3 catalyst.

Baixar (139KB)
8. Fig. 7. Proposed sequence of reactions occurring during the hydrogenation of carvone to carvomenthol (route I, solid arrow), carveol (route II, dashed arrow), dihydrocarvone (route III, dashed arrow), and carvacrol (route IV, double arrow, and V, dotted arrow).

Baixar (108KB)
9. Fig. 8. Change in the selectivity S of carvotaneacetone (a), carvacrol (b), carvomenthone (c), dihydrocarvone (d), carveol (d) from the conversion of carvone Xcarvone in the reaction mixture at atmospheric pressure and T = 305 K in various solvents: ■ – ethanol, ● – methanol, ▲ – hexane, ▼ – toluene.

Baixar (321KB)
10. Fig. 9. Kinetic curve for obtaining carveol (dependence of the amount of carveol formed on the reaction time of liquid-phase hydrogenation of carvone) in the studied solvents at P = 1 atm and T = 323 K: ■ – ethanol, ● – methanol, ▲ – hexane, ▼ – toluene.

Baixar (110KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025