NONEQUILIBRIUM NUCLEAR SPIN STATES OF ETHYLENE DURING ACETYLENE HYDROGENATION WITH PARAHYDROGEN OVER IMMOBILIZED IRIDIUM COMPLEXES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work rhodium and iridium immobilized complexes were prepared and characterized by X-ray photoelectron spectroscopy. For the first time, hyperpolarized 13C-ethylene was detected directly in the gas phase during acetylene hydrogenation with parahydrogen on immobilized iridium complexes. The line shape of polarized 13С‑ethylene unambiguously indicates that the hydrogen addition to the triple bond of acetylene on immobilized iridium complexes proceeds via syn-addition. It has been shown that the selective acetylene hydrogenation with parahydrogen over immobilized iridium complexes is an effective chemical method for enriching the nuclear spin isomers of ethylene.

作者简介

I. Skovpin

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

S. Sviyazov

International Tomography Center, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk; Russian Federation, 630090, Novosibirsk

D. Burueva

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

L. Kovtunova

International Tomography Center, Siberian Branch of the Russian Academy of Sciences; Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk; Russian Federation, 630090, Novosibirsk

A. Nartova

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

R. Kvon

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

V. Bukhtiyarov

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

I. Koptyug

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: koptyug@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk

参考

  1. Bos A.N.R., Westerterp K.R. // Chem. Eng. Process. Process Intensif. 1993. V. 32. P. 1–7. https://doi.org/10.1016/0255-2701(93)87001-B
  2. Zhivonitko V.V., Kovtunov K.V., Chapovsky P.L., Kop-tyug I.V. // Angew. Chem. Int. Ed. 2013. V. 52. P. 13251–13255. https://doi.org/10.1002/anie.201307389
  3. Chapovsky P.L., Zhivonitko V.V., Koptyug I.V. // J. Phys. Chem. A. 2013. V. 117. P. 9673–9683. https://doi.org/10.1021/jp312322f
  4. Гельмуханов Ф.Х., Шалагин А.М. // Письма в ЖЭТФ. 1979. V. 29. P. 773–776.
  5. Sun Z.-D., Takagi K., Matsushima F. // Science. 2005. V. 310. P. 1938–1941. https://doi.org/10.1126/science.1120037
  6. Eills J., Budker D., Cavagnero S., Chekmenev E.Y., Elliott S.J., Jannin S., Lesage A., Matysik J., Meersmann T., Prisner T., Reimer J.A., Yang H., Koptyug I.V. // Chem. Rev. 2023. V. 123. P. 1417–1551. https://doi.org/10.1021/acs.chemrev.2c00534
  7. Ковтунов К.В., Буруева Д.Б., Свиязов С.В., Сальников О.Г., Гудсон Б.М., Чекменев Э.Ю., Коптюг И.В. // Изв. АН. Сер. Хим. 2021. V. 12. P. 2382–2389.
  8. Покочуева Е.В., Святова А.И., Буруева Д.Б., Коптюг И.В. // Изв. АН. Сер. Хим. 2023. V. 1. P. 1–19.
  9. Duckett S.B., Mewis R.E. // Acc. Chem. Res. 2012. V. 45 P. 1247–1257. https://doi.org/10.1021/ar2003094
  10. Koptyug I.V., Kovtunov K.V., Burt S.R., Anwar M.S., Hilty C., Han S.-I., Pines A., Sagdeev R.Z. // J. Am. Chem. Soc. 2007. V. 129. P. 5580–5586. https://doi.org/10.1021/ja068653o
  11. Kovtunov K.V., Beck I.E., Bukhtiyarov V.I., Koptyug I.V. // Angew. Chem. Int. Ed. 2008. V. 47. P. 1492–1495. https://doi.org/10.1002/anie.200704881
  12. Kovtunov K.V., Zhivonitko V.V., Skovpin I.V., Barskiy D.A., Koptyug I.V. // Top. Curr. Chem. 2013. V. 338. P. 123–180. https://doi.org/10.1007/128_2012_371
  13. Pokochueva E.V., Burueva D.B., Kovtunova L.M., Bukhtiyarov A.V., Gladky A.Yu., Kovtunov K.V., Koptyug I.V., Bukhtiyarov V.I. // Faraday Discuss. 2021. V. 229. P. 161–175. https://doi.org/10.1039/C9FD00138G
  14. Burueva D.B., Kovtunov K.V., Bukhtiyarov A.V., Barskiy D.A., Prosvirin I.P., Mashkovsky I.S., Baeva G.N., Bukhtiyarov V.I., Stakheev A.Yu., Koptyug I.V. // Chem. Eur. J. 2018. V. 24. P. 2547–2553. https://doi.org/10.1002/chem.201705644
  15. Zhao E.W., Maligal-Ganesh R., Xiao C., Goh T.-W., Qi Z., Pei Y., Hagelin-Weaver H.E., Huang W., Bowers C.R. // Angew. Chem. Int. Ed. 2017. V. 56. P. 3925–3929. https://doi.org/10.1002/anie.201701314
  16. Corma A., Salnikov O.G., Barskiy D.A., Kovtunov K.V., Koptyug I.V. // Chem. Eur. J. 2015. V. 21. P. 7012–7015. https://doi.org/10.1002/chem.201406664
  17. Skovpin I.V., Zhivonitko V.V., Koptyug I.V. // Appl. Magn. Reson. 2011. V. 41. P. 393–410. https://doi.org/10.1007/s00723-011-0255-z
  18. Skovpin I.V., Zhivonitko V.V., Kaptein R., Koptyug I.V. // Appl. Magn. Reson. 2013. V. 44. P. 289–300. https://doi.org/10.1007/s00723-012-0419-5
  19. Skovpin I.V., Zhivonitko V.V., Prosvirin I.P., Khabibulin D.F., Koptyug I.V. // Z. Phys. Chem. 2017. V. 231. P. 575–592. https://doi.org/10.1515/zpch-2016-0824
  20. Skovpin I.V., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Catal. Sci. Technol. 2022. V. 12. P. 3247–3253. https://doi.org/10.1039/D1CY02258J
  21. Crabtree R.H., Morris G.E. // J. Organomet. Chem. 1977. V. 135. P. 395–403. https://doi.org/10.1016/S0022-328X(00)88091-2
  22. Yamada T., Matsuo T., Ogawa A., Ichikawa T., Kobayashi Y., Masuda H., Miyamoto R., Bai H., Meguro K., Sawama Y., Monguchi Y., Sajiki H. // Org. Process Res. Dev. 2018. V. 23. P. 462–469. https://doi.org/10.1021/acs.oprd.8b00291
  23. Huang L., Ang T.P., Wang Z., Tan J., Chen J., Wong P.K. // Inorg. Chem. 2011. V. 50. P. 2094–2111. https://doi.org/10.1021/ic100824e
  24. Crudden C.M., Sateesh M., Lewis R. // J. Am. Chem. Soc. 2005. V. 127. P. 10045–10050. https://doi.org/10.1021/ja0430954
  25. Holsboer F., Beck W., Bartunik H.D. // J. Chem. Soc., Dalt. Trans. 1973. P. 1828–1829. https://doi.org/10.1039/DT9730001828
  26. Fernando N.K., Cairns A.B., Murray C.A., Thompson A.L., Dickerson J.L., Garman E.F., Ahmed N., Ratcliff L.E., Regoutz A. // J. Phys. Chem. A. 2021. V. 125. P. 7473–7488. https://doi.org/10.1021/acs.jpca.1c05759
  27. Bowers C.R., Weitekamp D.P. // J. Am. Chem. Soc. 1987. V. 109. P. 5541–5542. https://doi.org/10.1021/ja00252a049
  28. Salnikov O.G., Kovtunov K.V., Barskiy D.A., Khudorozhkov A.K., Inozemtseva E.A., Prosvirin I.P., Bukhtiya-rov V.I., Koptyug I.V. // ACS Catal. 2014. V. 4. P. 2022–2028. https://doi.org/10.1021/cs500426a
  29. Giordano G., Crabtree R.H., Heintz R.M., Forster D., Morris D.E. Di-μ-chloro-bis(η4-1,5-cyclooctadlene) dirhodium (I). In: Inorganic syntheses. V. 19. Shri-ver D.F. (Ed.). John Wiley & Sons, 1979. P. 218–220. https://doi.org/10.1002/9780470132500.ch50
  30. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray photoelectron spectroscopy. 2nd edn. Perkin-Elmer Corp., Eden Priarie, MN, USA, 1992.
  31. XPSPEAK, свободно распространяемое программное обеспечение для анализа спектров РФЭС // http://xpspeak.software.informer.com/4.1/ (ссылка активна на 27.12.2022).
  32. Квон Р.И., Нартова АВ., Ковтунова Л.М., Бухтияров В.И. // Журн. структ. хим. 2023. V. 64. P. 106142. https://doi.org/10.26902/JSC_id106142

补充文件

附件文件
动作
1. JATS XML
2.

下载 (49KB)
3.

下载 (343KB)
4.

下载 (130KB)
5.

下载 (284KB)

版权所有 © И.В. Сковпин, С.В. Свиязов, Д.Б. Буруева, Л.М. Ковтунова, А.В. Нартова, Р.И. Квон, В.И. Бухтияров, И.В. Коптюг, 2023