Применение квазислучайных множеств при планировании многокомпонентного градуировочного эксперимента

А.С. Мананков

Самарский государственный технический университет, Самара, Россия

Обоснование. Планирование эксперимента является междисциплинарным разделом науки. Его основной задачей является достижение поставленных целей исследования минимальным числом измерений и образцов, а значит, экономия средств и времени.

В химическом спектральном анализе часто исследуются сложные смеси, включающие два и более компонента. На основании спектральных данных строится градуировочная модель, с помощью которой можно количественно определять концентрации веществ в образце. Модель строится на основании некоторой обучающей выборки (набора). Имея обученные модели, можно определить концентрации всех анализируемых компонентов из единичного спектра. Можно выделить три основных подхода к формированию градуировочного набора образцов: ручной, систематический и случайный.

Для создания градуировочного набора образцов нужны четкие критерии для его оценки. Критерии оценки качества обучающего набора для создания нескольких градуировочных моделей на одних и тех же спектральных данных ранее не были четко сформулированы. Как правило, принимают во внимание только отсутствие корреляции между концентрациями компонентов. Однако этого явно недостаточно, и в работе [1] была показана важность еще двух параметров: полноты и равномерности заполнения пространства эксперимента (ПЭ). Под ПЭ понимается квадрат, куб или гиперкуб, образованный диапазонами, огранивающими концентрации компонентов (факторов). Набор образцов, таким образом, представляется координатами точек в данном пространстве. Вручную выбрать оптимальный обучающий набор градуировочных образцов трудно даже для двухкомпонентной смеси, тем более для трех и более компонентов. Для этого используют специальные алгоритмы.

Для оценки качества обучающих наборов и их сравнения между собой требуются численные критерии. Наиболее неоднозначной является мера равномерности заполнения ПЭ. В качестве такого критерия в настоящей работе использована функция размаха [1]. Ее преимуществами по сравнению с другими критериями [2, 3] являются скорость расчета и четкая интерпретация полученных значений с точки зрения качества данных [4].

В данном исследовании рассматривается случайный подход к формированию градуировочного набора образцов. Использование случайных значений часто встречается при задании концентраций компонентов в обучающем наборе для градуировочного эксперимента в спектральном анализе. При случайном подходе обычно используется какой-либо программный генератор псевдослучайных чисел. Однако, как было по-казано в работе [5], создание качественного градуировочного набора этим методом требует относительно большого числа «случайных» образцов, что делает его неоптимальным.

В настоящей работе предлагается использование квазислучайных множеств [6], то есть множеств точек распределенных более равномерно, чем случайное множество, но не образующих строгую периодическую структуру. В спектральном анализе такой подход ранее не использовался.

Цель — найти двумерное квазислучайное множество, позволяющее достигнуть требуемых критериев качества градуировочного набора, используя минимальное число точек (образцов).

Методы. Рассматривался диапазон от 3 до 30 точек, где при каждом формировании набора высчитывались три критерия качества: коэффициент корреляции, функция размаха и незаполненность ПЭ. Последняя величина выражается как единица минус отношение площади образованного точками выпуклого многоугольника к общей площади. Хорошими будем считать следующие диапазоны критериев: 0–0,15 по корреляции и незаполненности, 0–0,2 — по функции размаха; допустимыми: 0,15–0,3 по корреляции и незаполненности, 0,2–0,4 — по функции размаха. Более высокие значения критериев считаются недопустимыми. Были исследованы четыре метода создания последовательностей: Соболя, Халтона, Хаммерсли и R2.

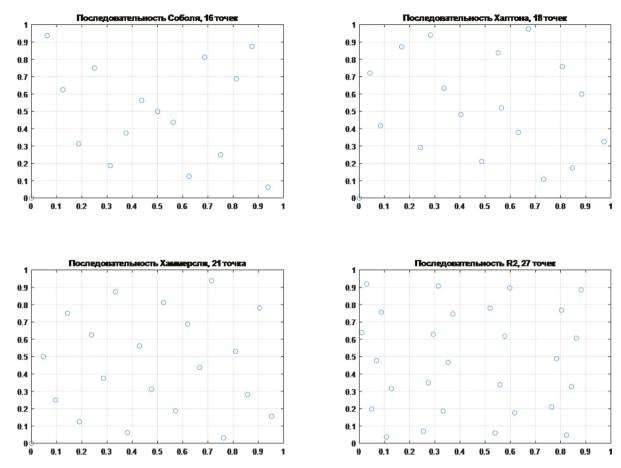


Рис. 1. Графические представления последовательностей

Результаты. Рассчитанные значения критериев отражены в табл. 1.

Таблица 1. Последовательности и критерии

Последовательность	Минимальное количество точек	Корреляция	Функция размаха	Незаполненность пространства
Соболя	16	0,012	0,392	0,234
Халтона	18	0,052	0,397	0,284
Хаммерсли	21	0,109	0,360	0,272
R2	27	0,009	0,234	0,296

Выводы. Среди квазислучайных последовательностей лучшими оказались последовательности Соболя и Халтона. С применением последовательности Соболя было достигнуто допустимое качество набора для 16 образцов; последовательностью Халтона — для 18 образцов.

Ключевые слова: планирование эксперимента; квазислучайные последовательности; равномерное распределение; математическое моделирование.

Список литературы

- 1. Bogomolov A. Diagonal designs for a multi-component calibration experiment // Analytica Chimica Acta. 2017. Vol. 951. P. 46–57. doi: 10.1016/j.aca.2016.11.038
- 2. Liang Y.-Z., Fang K.-T., Xu Q.-S. Uniform design and its applications in chemistry and chemical engineering // Chemom Intell Lab Syst. 2001. Vol. 58, N 1. P. 43–57. doi: 10.1016/S0169-7439(01)00139-3
- 3. Kirsanov D., Panchuk V., Agafonova-Moroz M., et al. A sample-effective calibration design for multiple components // The Analyst. 2014. Vol. 139, N 17. P. 4303–4309. doi: 10.1039/c4an00227j

- 4. Leardi R. Experimental design in chemistry: a tutorial // Anal Chim Acta. 2009. Vol. 652, N 1-2. P. 161-172. doi: 10.1016/j.aca.2009.06.015
- 5. Brown S.D., Tauler R., Walczak B. Comprehensive chemometrics. 2nd edit. Amsterdam: Elsevier, 2024.
- 6. Кейперс Л., Нидеррайтер Г. Равномерное распределение последовательностей. Москва: Наука, 1985. 408 с.

Сведения об авторе:

Александр Сергеевич Мананков — аспирант, группа 1-УПНК-1.4.2, химико-технологический факультет; Самарский государственный технический университет, Самара, Россия. E-mail: s90w23.14@mail.ru

Сведения о научном руководителе:

Андрей Юрьевич Богомолов — доктор химических наук, доцент; Самарский государственный технический университет, Самара, Россия. E-mail: c11b0f5057f5@mail.ru