Role of middle-scale solar wind structures in the turbulence development behind the bow shock

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Present study estimates contribution of the middle-scale solar wind structures (variations which are registered by a spacecraft during ~10 min intervals) in the turbulence development in the transition region behind the bow shock. The analysis is based on simultaneous measurements of plasma and/or magnetic field parameters in the solar wind, in the dayside magnetosheath and at the flanks. The study adopts measurements by Wind, THEMIS and Spektr-R spacecraft. Properties of magnetic field and ion flux fluctuation spectra are analyzed in the frequency range 0.01-4 Hz, which corresponds to transition from MHD to kinetic scales. The dynamics of turbulence properties in the magnetosheath is governed by large-scale disturbances while structures with smaller scales have effect during absence of large-scale structures.

Sobre autores

L. Rakhmanova

Space Research Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: rakhlud@gmail.com
Rússia, Moscow

M. Riazantseva

Space Research Institute of the Russian Academy of Sciences

Email: orearm@gmail.com
Rússia, Moscow

A. Khokhlachev

Space Research Institute of the Russian Academy of Sciences

Email: aleks.xaa@yandex.ru
Rússia, Moscow

Yu. Yermolaev

Space Research Institute of the Russian Academy of Sciences

Email: yermol@iki.rssi.ru
Rússia, Moscow

G. Zastenker

Space Research Institute of the Russian Academy of Sciences

Email: gzastenk@iki.rssi.ru
Rússia, Moscow

Bibliografia

  1. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976−2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
  2. Застенкер Г.Н., Шафранкова Я., Немечек З. и др. Быстрые измерения параметров солнечного ветра с помощью прибора БМСВ // Космич. исслед. Т. 51. № 2. С. 88–99. 2013.
  3. Пулинец М.С., Рязанцева М.О., Антонова Е.Е., Кирпичев И.П. Зависимость параметров магнитного поля вблизи подсолнечной точки магнитосферы от межпланетного магнитного поля по данным эксперимента THEMIS // Геомагнетизм и аэрономия. Т. 52. № 6. С. 769–778. 2012.
  4. Рахманова Л.С., Рязанцева М.О., Застенкер Г.Н., Веригин М.И., Ермолаев Ю.И., Лодкина И.Г. Влияние параметров межпланетной среды и границ магнитослоя на величину коэффициента корреляции между потоком ионов в солнечном ветре и магнитослое // Геомагнетизм и аэрономия. Т. 58. № 4. С. 463–470. 2018.
  5. Рахманова Л.С., Рязанцева М.О., Застенкер Г.Н., Ермолаев Ю.И., Лодкина И.Г., Чесалин Л.С. Влияние характеристик турбулентности плазмы солнечного ветра на свойства турбулентного каскада в магнитослое // Космические исслед. Т. 57. № 6. С. 1–8. 2019.
  6. Alexandrova O., Lacombe C., Mangeney A., Grappin R., Maksimovic M. Solar wind turbulent spectrum at plasma kinetic scales // Astrophys. J. V. 760. № 2. P. 121–126. 2012. https://doi.org/10.1088/0004-637X/760/2/121
  7. Alexandrova O., Chen C.H.K., Sorriso-Valvo L., Horbury T.S., Bale S.D. Solar Wind Turbulence and the Role of Ion Instabilities // Space Sci. Rev. V. 178. P. 101–139. 2013. https://doi.org/10.1007/s11214-013-0004-8
  8. Anderson B.J., Fuselier S.A., Gary S.P., Denton R.E. Magnetic spectral signatures in the Earth’s magnetosheath and plasmadepletion layer // J. Geophys. Res. V. 99. P. 5877–5891. 1994. https://doi.org/10.1029/93JA02827
  9. Angelopoulos V. The THEMIS mission // Space Sci. Rev. V. 141. P. 5–34. 2008. https://doi.org/10.1007/s11214-008-9336-1
  10. Auster H.U., Glassmeier K.H., Magnes W., et al. The THEMIS Fluxgate Magnetometer // Space Sci. Rev. V. 141. № 1–4. P. 235–264. 2008. https://doi.org/10.1007/s11214-008-9365-9
  11. Blum L.W., Koval A., Richardson I.G., Wilson L.B., Malaspina D., Greeley A., Jaynes A.N. Prompt response of the dayside magnetosphere to discrete structures within the sheath region of a coronal mass ejection // Geophysical Research Letters. V. 48. e2021GL092700. 2021. https://doi.org/10.1029/2021GL092700
  12. Boldyrev S., Perez J. C. Spectrum of Kinetic Alfven Turbulence // Astrophys. J. Lett. V. 758. № 2. L44. 2012. https://doi.org/10.1088/2041-8205/758/2/L44
  13. Borodkova N., Zastenker G., Riazantseva M., Richardson J. Large and sharp solar wind dynamic pressure variations as a source of geomagnetic field disturbances at the geosynchronous orbit // Planet. Space Sci. V. 53. P. 25−32. 2005. https://doi.org/10.1016/j.pss.2004.09.025
  14. Breuillard H., Matteini L., Argall M. R., et al. New Insights into the Nature of Turbulence in the Earth’s Magnetosheath Using Magnetospheric Multi Scale Mission Data // Astrophys. J. V. 859. 127. 2018. https://doi.org/10.3847/1538-4357/aabae8
  15. Breuillard H., Yordanova E., Vaivads A., Alexandrova O. The effects of kinetic instabilities on small-scale turbulence in Earth’s magnetosheath // Astrophys. J. V. 829. 54. 2016. https://doi.org/10.3847/0004-637X/829/1/54
  16. Bruno R., Carbone V., Vörös Z., et al. Coordinated Study on Solar Wind Turbulence During the Venus-Express, ACE and Ulysses Alignment of August 2007 // Earth Moon Planets. V. 104. P. 101–104. 2009. https://doi.org/10.1007/s11038-008-9272-9
  17. Bruno R., Carbone V. The Solar Wind as a Turbulence Laboratory // Living Rev. Sol. Phys. V. 10. № 2. 2013. https://doi.org/10.12942/lrsp-2013-2
  18. Chen C.H.K. Recent progress in astrophysical plasma turbulence from solar wind observations. // J. Plasma Phys. V. 82. 535820602. 2016. https://doi.org/10.1017/S0022377816001124
  19. Chen C.H.K., Boldyrev S. Nature of Kinetic Scale Turbulence in the Earth’s Magnetosheath // Astrophys. J. V. 842. P. 122–131. 2017. https://doi.org/10.3847/1538-4357/aa74e0
  20. Czaykowska A., Bauer T.M., Treumann R.A., and Baumjohann W. Magnetic field fluctuations across the Earth’s bow shock // Ann. Geophys. V. 19. P. 275–287. 2001. https://doi.org/10.5194/angeo-19-275-2001
  21. Dmitriev A.V., Lalchand B., Ghosh S. Mechanisms and Evolution of Geoeffective Large-Scale Plasma Jets in the Magnetosheath // Universe. V. 7. 152. https://doi.org/10.3390/universe7050152
  22. Huang S.Y., Hadid L.Z., Sahraoui F., Yuan Z.G., Deng X.H. On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence // Astrophys. J. Lett. V. 836. L10. 2017. https://doi.org/10.3847/2041-8213/836/1/L10
  23. Lacombe C., Belmont G. Waves in the Earth’s magnetosheath: Observations and interpretations // Adv. Sp. Res. V. 15. P. 329–340. 1995. https://doi.org/10.1016/0273-1177(94)00113-F
  24. LaMoury A.T., Hietala H., Plaschke F., Vuorinen L., Eastwood J.P. Solar wind control of magnetosheath jet formation and propagation to the magnetopause. J. Geophys. Res. Space Phys. // V. 126. № 9. e2021JA029592. 2021. https://doi.org/10.1029/2021ja029592
  25. Lepping R.P., Acuna M.H., Burlaga L.F., et al. The WIND magnetic field investigation // Space Sci. Rev. V. 71. № 1–4. P. 207–229. 1995. https://doi.org/10.1007/BF00751330
  26. Li H., Jiang W., Wang C., Verscharen D., Zeng C., Russell C.T., Giles B., Burch J.L. Evolution of the Earth’s Magnetosheath Turbulence: A Statistical Study Based on MMS Observations // Astrophys. J. V. 898. L43. 2020. https://doi.org/10.3847/2041-8213/aba531
  27. Lin R.P., Anderson K.A., Ashford S., et al. Three-Dimensional Plasma and Energetic Particle Investigation for the Wind Spacecraft // Space Sci. Rev. V. 71. P. 125–153. 1995. https://doi.org/10.1007/BF00751328
  28. McFadden J.P., Carlson C.W., Larson D., Ludlam M., Abiad R., Elliott B., Turin P., Marckwordt M., Angelopoulos V. The THEMIS ESA plasma instrument and in-flight calibration // Space Sci. Rev. V. 141. P. 277–302. 2008. https://doi.org/10.1007/s11214-008-9440-2
  29. Němeček Z., Šafránková J., Zastenker G. N., Pišoft P., Paularena K.I., and Richardson J.D. Observations of the radial magnetosheath profile and a comparison with gasdynamic model 1024 predictions // Geophys. Res. Lett. V. 27. P. 2801–2804. 2000. https://doi.org/10.1029/2000GL000063
  30. Ogilvie K.W., Chornay D.J., Fritzenreiter R.J., et al. SWE, a comprehensive plasma instrument for the Wind spacecraft // Space Sci. Rev.V. 71. № 1–4. P. 55–77. 1995. https://doi.org/10.1007/BF00751326
  31. Pitňa A., Šafránková J., Němeček Z., Goncharov O., Němec F., Přech L., Chen C.H.K., Zastenker G. Density fluctuations upstream and downstream of interplanetary shocks // Astrophys. J. V. 819. 41–50. 2016. https://doi.org/10.3847/0004-637X/819/1/41
  32. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y., and Lodkina I. Dynamics of Plasma Turbulence at Earth’s Bow Shock and through the Magnetosheath // Astrophys. J. V. 901. № 30. P. 30–40. 2020. https://doi.org/10.3847/1538-4357/abae00
  33. Rakhmanova L., Riazantseva M., Zastenker G., and Yermolaev Y. Large-Scale Solar Wind Phenomena Affecting the Turbulent Cascade Evolution behind the Quasi-Perpendicular Bow Shock // Universe. V. 8. № 12. P. 611. 2022. https://doi.org/10.3390/universe8120611
  34. Rakhmanova L., Riazantseva M., Zastenker G., Verigin M. Kinetic-Scale Ion Flux Fluctuations Behind the Quasi-Parallel and Quasi-Perpendicular Bow Shock. // J. Geophys. Res. Sp. Phys. V. 123. P. 5300–5314. 2018. https://doi.org/10.1029/2018JA025179
  35. Šafránková J., Hayosh M., Gutinska O., Němeček Z., Přech L. Reliability of prediction of the magnetosheath Bz component from the interplanetary magnetic field observations // J. Geophys. Res. V. 114. A12213. 2009. https://doi.org/10.1029/2009JA014552
  36. Šafránková J., Němeček Z., Přech L., et al. Fast solar wind monitor (BMSW): description and first results // Space Sci. Rev. V. 175. P. 165–182. 2013. https://doi.org/10.1007/s11214-013-9979-4
  37. Schekochihin A.A., Cowley S., Dorland W., Hammett G., Howes G.G., Quataert E., Tatsuno T. Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas // Astrophys. J. Suppl. Ser. V. 182. P. 310–377. 2009. https://doi.org/10.1088/0067-0049/182/1/310
  38. Schwartz S.J., Burgess D., Moses J.J. Low-frequency waves in the Earth’s magnetosheath: present status // Ann. Geophys. V. 14. P. 1134–1150. 1996. https://doi.org/10.1007/s00585-996-1134-z
  39. Shevyrev N.N., Zastenker G.N., Nozdrachev M.N., Němeček Z., Šafránková J., and Richardson J.D. High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: radial profile and some features // Adv. Space Res. V. 31. P. 1389–1394. 2003. https://doi.org/10.1016/S0273-1177(03)00008-5
  40. Shevyrev N.N., Zastenker G.N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks // Planet. Space Sci. V. 53. P. 95–102. 2005. https://doi.org/10.1016/j.pss.2004.09.033
  41. Smith C., Hamilton K., Vasquez B., Leamon R. Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade // Astrophys. J. V. 645: L85–L88. 2006. https://doi.org/10.1086/506151
  42. Tsurutani B.T., Lakhina G.S., Verkhoglyadova O.P., Gonzalez W.D., Echer E., Guarnieri F.L. A review of interplanetary discontinuities and their geomagnetic effects // Journal of Atmospheric and Solar-Terrestrial Physics. V. 73. № 1. P. 5–19. 2011. https://doi.org/10.1016/j.jastp.2010.04.001
  43. Turc L., Fontaine D., Escoubet C.P., Kilpua E.K.J., Dimmock A.P. Statistical study of the alteration of the magnetic structureof magnetic clouds in the Earth’s magnetosheath // J J. Geophys. Res. Sp. Phys. V. 122. № 3. P. 2956–2972. 2017. https://doi.org/10.1002/2016JA023654
  44. Verigin M.I., Tátrallyay M., Erdős G., Kotova G.A. Magnetosheath – Interplanetary medium reference frame: Application for a statistical study of mirror type waves in the terrestrial plasma environment // Adv. Space Res. V. 37. P. 515-521. 2006. https://doi.org/10.1016/j.asr.2005.03.042
  45. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms // J. Geophys. Res. V. 117. A00L07. 2012. https://doi.org/10.1029/2011JA017139

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025