Role of middle-scale solar wind structures in the turbulence development behind the bow shock

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Present study estimates contribution of the middle-scale solar wind structures (variations which are registered by a spacecraft during ~10 min intervals) in the turbulence development in the transition region behind the bow shock. The analysis is based on simultaneous measurements of plasma and/or magnetic field parameters in the solar wind, in the dayside magnetosheath and at the flanks. The study adopts measurements by Wind, THEMIS and Spektr-R spacecraft. Properties of magnetic field and ion flux fluctuation spectra are analyzed in the frequency range 0.01-4 Hz, which corresponds to transition from MHD to kinetic scales. The dynamics of turbulence properties in the magnetosheath is governed by large-scale disturbances while structures with smaller scales have effect during absence of large-scale structures.

About the authors

L. S. Rakhmanova

Space Research Institute of the Russian Academy of Sciences

Author for correspondence.
Email: rakhlud@gmail.com
Russian Federation, Moscow

M. O. Riazantseva

Space Research Institute of the Russian Academy of Sciences

Email: orearm@gmail.com
Russian Federation, Moscow

A. A. Khokhlachev

Space Research Institute of the Russian Academy of Sciences

Email: aleks.xaa@yandex.ru
Russian Federation, Moscow

Yu. I. Yermolaev

Space Research Institute of the Russian Academy of Sciences

Email: yermol@iki.rssi.ru
Russian Federation, Moscow

G. N. Zastenker

Space Research Institute of the Russian Academy of Sciences

Email: gzastenk@iki.rssi.ru
Russian Federation, Moscow

References

  1. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976−2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
  2. Застенкер Г.Н., Шафранкова Я., Немечек З. и др. Быстрые измерения параметров солнечного ветра с помощью прибора БМСВ // Космич. исслед. Т. 51. № 2. С. 88–99. 2013.
  3. Пулинец М.С., Рязанцева М.О., Антонова Е.Е., Кирпичев И.П. Зависимость параметров магнитного поля вблизи подсолнечной точки магнитосферы от межпланетного магнитного поля по данным эксперимента THEMIS // Геомагнетизм и аэрономия. Т. 52. № 6. С. 769–778. 2012.
  4. Рахманова Л.С., Рязанцева М.О., Застенкер Г.Н., Веригин М.И., Ермолаев Ю.И., Лодкина И.Г. Влияние параметров межпланетной среды и границ магнитослоя на величину коэффициента корреляции между потоком ионов в солнечном ветре и магнитослое // Геомагнетизм и аэрономия. Т. 58. № 4. С. 463–470. 2018.
  5. Рахманова Л.С., Рязанцева М.О., Застенкер Г.Н., Ермолаев Ю.И., Лодкина И.Г., Чесалин Л.С. Влияние характеристик турбулентности плазмы солнечного ветра на свойства турбулентного каскада в магнитослое // Космические исслед. Т. 57. № 6. С. 1–8. 2019.
  6. Alexandrova O., Lacombe C., Mangeney A., Grappin R., Maksimovic M. Solar wind turbulent spectrum at plasma kinetic scales // Astrophys. J. V. 760. № 2. P. 121–126. 2012. https://doi.org/10.1088/0004-637X/760/2/121
  7. Alexandrova O., Chen C.H.K., Sorriso-Valvo L., Horbury T.S., Bale S.D. Solar Wind Turbulence and the Role of Ion Instabilities // Space Sci. Rev. V. 178. P. 101–139. 2013. https://doi.org/10.1007/s11214-013-0004-8
  8. Anderson B.J., Fuselier S.A., Gary S.P., Denton R.E. Magnetic spectral signatures in the Earth’s magnetosheath and plasmadepletion layer // J. Geophys. Res. V. 99. P. 5877–5891. 1994. https://doi.org/10.1029/93JA02827
  9. Angelopoulos V. The THEMIS mission // Space Sci. Rev. V. 141. P. 5–34. 2008. https://doi.org/10.1007/s11214-008-9336-1
  10. Auster H.U., Glassmeier K.H., Magnes W., et al. The THEMIS Fluxgate Magnetometer // Space Sci. Rev. V. 141. № 1–4. P. 235–264. 2008. https://doi.org/10.1007/s11214-008-9365-9
  11. Blum L.W., Koval A., Richardson I.G., Wilson L.B., Malaspina D., Greeley A., Jaynes A.N. Prompt response of the dayside magnetosphere to discrete structures within the sheath region of a coronal mass ejection // Geophysical Research Letters. V. 48. e2021GL092700. 2021. https://doi.org/10.1029/2021GL092700
  12. Boldyrev S., Perez J. C. Spectrum of Kinetic Alfven Turbulence // Astrophys. J. Lett. V. 758. № 2. L44. 2012. https://doi.org/10.1088/2041-8205/758/2/L44
  13. Borodkova N., Zastenker G., Riazantseva M., Richardson J. Large and sharp solar wind dynamic pressure variations as a source of geomagnetic field disturbances at the geosynchronous orbit // Planet. Space Sci. V. 53. P. 25−32. 2005. https://doi.org/10.1016/j.pss.2004.09.025
  14. Breuillard H., Matteini L., Argall M. R., et al. New Insights into the Nature of Turbulence in the Earth’s Magnetosheath Using Magnetospheric Multi Scale Mission Data // Astrophys. J. V. 859. 127. 2018. https://doi.org/10.3847/1538-4357/aabae8
  15. Breuillard H., Yordanova E., Vaivads A., Alexandrova O. The effects of kinetic instabilities on small-scale turbulence in Earth’s magnetosheath // Astrophys. J. V. 829. 54. 2016. https://doi.org/10.3847/0004-637X/829/1/54
  16. Bruno R., Carbone V., Vörös Z., et al. Coordinated Study on Solar Wind Turbulence During the Venus-Express, ACE and Ulysses Alignment of August 2007 // Earth Moon Planets. V. 104. P. 101–104. 2009. https://doi.org/10.1007/s11038-008-9272-9
  17. Bruno R., Carbone V. The Solar Wind as a Turbulence Laboratory // Living Rev. Sol. Phys. V. 10. № 2. 2013. https://doi.org/10.12942/lrsp-2013-2
  18. Chen C.H.K. Recent progress in astrophysical plasma turbulence from solar wind observations. // J. Plasma Phys. V. 82. 535820602. 2016. https://doi.org/10.1017/S0022377816001124
  19. Chen C.H.K., Boldyrev S. Nature of Kinetic Scale Turbulence in the Earth’s Magnetosheath // Astrophys. J. V. 842. P. 122–131. 2017. https://doi.org/10.3847/1538-4357/aa74e0
  20. Czaykowska A., Bauer T.M., Treumann R.A., and Baumjohann W. Magnetic field fluctuations across the Earth’s bow shock // Ann. Geophys. V. 19. P. 275–287. 2001. https://doi.org/10.5194/angeo-19-275-2001
  21. Dmitriev A.V., Lalchand B., Ghosh S. Mechanisms and Evolution of Geoeffective Large-Scale Plasma Jets in the Magnetosheath // Universe. V. 7. 152. https://doi.org/10.3390/universe7050152
  22. Huang S.Y., Hadid L.Z., Sahraoui F., Yuan Z.G., Deng X.H. On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence // Astrophys. J. Lett. V. 836. L10. 2017. https://doi.org/10.3847/2041-8213/836/1/L10
  23. Lacombe C., Belmont G. Waves in the Earth’s magnetosheath: Observations and interpretations // Adv. Sp. Res. V. 15. P. 329–340. 1995. https://doi.org/10.1016/0273-1177(94)00113-F
  24. LaMoury A.T., Hietala H., Plaschke F., Vuorinen L., Eastwood J.P. Solar wind control of magnetosheath jet formation and propagation to the magnetopause. J. Geophys. Res. Space Phys. // V. 126. № 9. e2021JA029592. 2021. https://doi.org/10.1029/2021ja029592
  25. Lepping R.P., Acuna M.H., Burlaga L.F., et al. The WIND magnetic field investigation // Space Sci. Rev. V. 71. № 1–4. P. 207–229. 1995. https://doi.org/10.1007/BF00751330
  26. Li H., Jiang W., Wang C., Verscharen D., Zeng C., Russell C.T., Giles B., Burch J.L. Evolution of the Earth’s Magnetosheath Turbulence: A Statistical Study Based on MMS Observations // Astrophys. J. V. 898. L43. 2020. https://doi.org/10.3847/2041-8213/aba531
  27. Lin R.P., Anderson K.A., Ashford S., et al. Three-Dimensional Plasma and Energetic Particle Investigation for the Wind Spacecraft // Space Sci. Rev. V. 71. P. 125–153. 1995. https://doi.org/10.1007/BF00751328
  28. McFadden J.P., Carlson C.W., Larson D., Ludlam M., Abiad R., Elliott B., Turin P., Marckwordt M., Angelopoulos V. The THEMIS ESA plasma instrument and in-flight calibration // Space Sci. Rev. V. 141. P. 277–302. 2008. https://doi.org/10.1007/s11214-008-9440-2
  29. Němeček Z., Šafránková J., Zastenker G. N., Pišoft P., Paularena K.I., and Richardson J.D. Observations of the radial magnetosheath profile and a comparison with gasdynamic model 1024 predictions // Geophys. Res. Lett. V. 27. P. 2801–2804. 2000. https://doi.org/10.1029/2000GL000063
  30. Ogilvie K.W., Chornay D.J., Fritzenreiter R.J., et al. SWE, a comprehensive plasma instrument for the Wind spacecraft // Space Sci. Rev.V. 71. № 1–4. P. 55–77. 1995. https://doi.org/10.1007/BF00751326
  31. Pitňa A., Šafránková J., Němeček Z., Goncharov O., Němec F., Přech L., Chen C.H.K., Zastenker G. Density fluctuations upstream and downstream of interplanetary shocks // Astrophys. J. V. 819. 41–50. 2016. https://doi.org/10.3847/0004-637X/819/1/41
  32. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y., and Lodkina I. Dynamics of Plasma Turbulence at Earth’s Bow Shock and through the Magnetosheath // Astrophys. J. V. 901. № 30. P. 30–40. 2020. https://doi.org/10.3847/1538-4357/abae00
  33. Rakhmanova L., Riazantseva M., Zastenker G., and Yermolaev Y. Large-Scale Solar Wind Phenomena Affecting the Turbulent Cascade Evolution behind the Quasi-Perpendicular Bow Shock // Universe. V. 8. № 12. P. 611. 2022. https://doi.org/10.3390/universe8120611
  34. Rakhmanova L., Riazantseva M., Zastenker G., Verigin M. Kinetic-Scale Ion Flux Fluctuations Behind the Quasi-Parallel and Quasi-Perpendicular Bow Shock. // J. Geophys. Res. Sp. Phys. V. 123. P. 5300–5314. 2018. https://doi.org/10.1029/2018JA025179
  35. Šafránková J., Hayosh M., Gutinska O., Němeček Z., Přech L. Reliability of prediction of the magnetosheath Bz component from the interplanetary magnetic field observations // J. Geophys. Res. V. 114. A12213. 2009. https://doi.org/10.1029/2009JA014552
  36. Šafránková J., Němeček Z., Přech L., et al. Fast solar wind monitor (BMSW): description and first results // Space Sci. Rev. V. 175. P. 165–182. 2013. https://doi.org/10.1007/s11214-013-9979-4
  37. Schekochihin A.A., Cowley S., Dorland W., Hammett G., Howes G.G., Quataert E., Tatsuno T. Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas // Astrophys. J. Suppl. Ser. V. 182. P. 310–377. 2009. https://doi.org/10.1088/0067-0049/182/1/310
  38. Schwartz S.J., Burgess D., Moses J.J. Low-frequency waves in the Earth’s magnetosheath: present status // Ann. Geophys. V. 14. P. 1134–1150. 1996. https://doi.org/10.1007/s00585-996-1134-z
  39. Shevyrev N.N., Zastenker G.N., Nozdrachev M.N., Němeček Z., Šafránková J., and Richardson J.D. High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: radial profile and some features // Adv. Space Res. V. 31. P. 1389–1394. 2003. https://doi.org/10.1016/S0273-1177(03)00008-5
  40. Shevyrev N.N., Zastenker G.N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks // Planet. Space Sci. V. 53. P. 95–102. 2005. https://doi.org/10.1016/j.pss.2004.09.033
  41. Smith C., Hamilton K., Vasquez B., Leamon R. Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade // Astrophys. J. V. 645: L85–L88. 2006. https://doi.org/10.1086/506151
  42. Tsurutani B.T., Lakhina G.S., Verkhoglyadova O.P., Gonzalez W.D., Echer E., Guarnieri F.L. A review of interplanetary discontinuities and their geomagnetic effects // Journal of Atmospheric and Solar-Terrestrial Physics. V. 73. № 1. P. 5–19. 2011. https://doi.org/10.1016/j.jastp.2010.04.001
  43. Turc L., Fontaine D., Escoubet C.P., Kilpua E.K.J., Dimmock A.P. Statistical study of the alteration of the magnetic structureof magnetic clouds in the Earth’s magnetosheath // J J. Geophys. Res. Sp. Phys. V. 122. № 3. P. 2956–2972. 2017. https://doi.org/10.1002/2016JA023654
  44. Verigin M.I., Tátrallyay M., Erdős G., Kotova G.A. Magnetosheath – Interplanetary medium reference frame: Application for a statistical study of mirror type waves in the terrestrial plasma environment // Adv. Space Res. V. 37. P. 515-521. 2006. https://doi.org/10.1016/j.asr.2005.03.042
  45. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms // J. Geophys. Res. V. 117. A00L07. 2012. https://doi.org/10.1029/2011JA017139

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences