Position of the source of daylight high-latitude magnetic pulses in the magnetosphere according to DMSP satellite data
- Autores: Safargaleev V.V.1
-
Afiliações:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, St. Petersburg Department
- Edição: Volume 65, Nº 1 (2025)
- Páginas: 75-91
- Seção: Articles
- URL: https://j-morphology.com/0016-7940/article/view/684619
- DOI: https://doi.org/10.31857/S0016794025010072
- EDN: https://elibrary.ru/ADXGUN
- ID: 684619
Citar
Resumo
Daytime high-latitude geophysical phenomena provide a ground-based observer with information about processes at the daytime magnetopause and/or in adjacent magnetospheric domains. It is assumed that these phenomena are initiated by changes in the parameters of the interplanetary medium and therefore can be used as a tool for studying the ways in which solar wind energy penetrates through the magnetopause. Such phenomena include magnetic impulses, which are an isolated train of damped oscillations of 2–3 bursts with a repetition period of 8–12 minutes. Using data from the Scandinavian network of magnetometers IMAGE, eight magnetic impulse events were studied for which DMSP satellites flew over the observation area during, shortly before and immediately after the pulse, crossing the boundaries of several domains. Based on ground-based and satellite data, it has been shown that the downward field-aligned current associated with the impulses is located away from the magnetopause. This means that the impulse cannot be considered as an ionospheric trace of a reconnected magnetic flux tube (flux transfer event, FTE) and/or as a traveling convection vortex (TCV). Using more statistics, it has been established that the pulse is preceded by noticeable changes in the By and Bz components of the IMF, while the contribution to the generation of the impulse from the pressure jump and solar wind speed, as well as the Bx component of the IMF, is not obvious. A possible scenario for the initiation of a magnetic pulse by IMF variations is discussed.
Palavras-chave
Sobre autores
V. Safargaleev
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, St. Petersburg Department
Autor responsável pela correspondência
Email: Vladimir.safargaleev@pgia.ru
Rússia, St. Petersburg
Bibliografia
- Воробьев В.Г., Зверев В.Л. Старков Г.В. Геомагнитные импульсы в дневной высокоширотной области: основные морфологические характеристики и связь с динамикой дневных сияний // Геомагнетизм и аэрономия. Т. 33. 69−79. 1993.
- Воробьев В.Г., Зверев В.Л. Морфологические особенности перемещающихся токовых вихрей. // Геомагнетизм и аэрономия.Т. 35. № 5. С. 35−43. 1997
- Ляцкий В.Б., Мальцев Ю.П. Магнитосферно-ионосферное взаимодействие. М.: Наука, 192 с. 1983.
- Пилипенко В.А. Резонансные эффекты ультра-низкочастотных волновых полей в околоземном пространстве // Автореф. дис. док. физ.-мат. наук. М.: изд-во ИФЗ РАН, 33 с. 2006.
- Amm O., Engebretson M.J., Hughes T., Newitt L., Viljanen A., Watermann J. A traveling convection vortex event study: Instantaneous ionospheric equivalent currents, estimation of fieldaligned currents, and the role of induced currents // J. Geophys. Res. V. 107. 1334. 2002. https://doi.org/10.1029/2002JA009472.
- Beaujardiere O. de la, Watermann J., Newell P., Rich F. Relationship between Birkeland current regions, particle precipitation, and electric field // J. Geophys. Res. V. 98. P. 711−7720. 1993. https://doi.org/10.1029/92JA02005.
- Bering III E.A., Lanzerotti L.J., Benbrook J.R., Lin Z.-M. Solar wind properties observed during high-latitude impulsive perturbation events // Geophys. Res. Lett. V. 17. P. 579−582. 1990. https://doi.org/10.1029/GL017i005p00579.
- Clauer C.R., Ridley A.J., Sitar R.J., Singer H.J., Rodger A.S., Friis-Christensen E., Papitashvili V.O. Field line resonant pulsations associated with a strong dayside ionospheric shear convection flow reversal // J. Geophys. Res. V. 102. P. 4585 – 4596. 1997. https://doi.org/10.1029/96JA02929.
- Eastwood J.P., Sibeck D.G., Angelopoulos V., Phan T.D., Bale S.D., McFadden J.P., et al. THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements // Geophys. Res. Lett. V. 35. № 17. 2008. https://doi.org/10.1029/2008GL033475.
- Friis-Christensen E., McHenry M.A., Clauer C.R., Vennerstrøm S. Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind // Geophys. Res. Lett. V. 15. P. 253–256. 1998. https://doi.org/10.1029/GL015i003p00253.
- Goertz C.K., Nielsen E., Korth A., Glassmeier K.H., Haldoupis C., Hoeg P., Hayward D. Observations of a possible ground signature of flux transfer events // J. Geophys. Res. V. 90. P. 4069–4078. 1985. https://doi.org/10.1029/JA090iA05p04069.
- Kim H., Lessard M.R., Jones S.L., et al. Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling // J. Geophys. Res. V. 122. P. 4943–4959. 2017. https://doi.org/10.1002/2017JA023904.
- Konik R.M., Lanzerotti L.J., Wolfe A., Maclennan C.G., Venkatesan D. Cusp latitude magnetic impulse events, 2, Interplanetary magnetic field and solar wind conditions // J. Geophys. Res. V. 99. P. 14831−14853. 1994. https://doi.org/10.1029/93JA03241.
- Lanzerotti L.J., Lee L.C., Maclennan C.G., Wolfe A., and Medford L.V. Possible evidence of flux transfer events in the polar ionosphere // Geophys. Res. Lett. 13. P. 1089−1092. 1986. https://doi.org/10.1029/GL013i011p01089.
- Leonovich A.S., Mazur V.A. Resonance excitation of standing Alfven waves in an axisymmetric magnetosphere (nonstationary oscillations) // Planet. Space Sci. V. 37. P. 1109–1116. 1989. https://doi.org/10.1016/0032-0633(89)90082-2.
- Leonovich A.S., Kozlov D.A. Focusing of fast magnetosonic waves in the dayside magnetosphere // J. Geophys. Res. V. 125. e2020JA027925. 2020. https://doi.org/ 10.1029/2020JA027925.
- Lin Y., Swift D.W., Lee L.C. Simulation of pressure pulses in the bow shock and magnetosheath driven by variations in interplanetary magnetic field direction // J. Geophys. Res. V. 101. P. 2725−27269. 1996. https://doi.org/10.1029/96JA02733.
- Lühr H., Lockwood M., Sandholt P.E., Hansen T.L., Moretto T. Multi-instrument ground-based observations of a travelling convection vortices event // Ann. Geophys. V. 1. P. 162−181. 1996. https://doi.org/10.1007/s00585-996-0162-z.
- Moretto T., Friis-Christensen E., Lühr H., Zesta E. Global perspective of ionospheric traveling convection vortices: Case studies of two Geospace Environmental Modeling events // J. Geophys. Res. V. 102. P. 11597–11610. 1997. https://doi.org/10.1029/97JA00324
- Moretto T., Sibeck D., Watermann J. Occurrence statistics of magnetic impulsive events // Annales Geophysicae. V. 22. P. 585−602. 2004. https://doi.org/10.5194/angeo-22-585-2004.
- Newell P.T., Wing S., Meng C-I., Sigilitto V. The auroral oval position, structure and intensity of precipitation from 1984 onward: an automated on-line base // J. Geophys. Res. V. 96. P. 5877−5882. 1991. https://doi.org/10.1029/90JA02450.
- Newell P.T., Meng C.-I. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics // Geophys. Res. Lett. V. 19. P. 609−612. 1992. https://doi.org/10.1029/92GL00404.
- Palin L., Opgenoorth H.J., Årgen J., et al. Modulation of the substorm current wedge by bursty bulk flows: 8 September 2002 – Revisited // J. Geophys. Res. V. 121. P. 4466–4482. 2016. https://doi.org/10.1002/2015JA022262.
- Pilipenko V.A., Engebretson M.J., Hartinger M.D, Fedorov E.N., Coyle S. Electromagnetic fields of magnetospheric disturbances in the conjugate ionospheres: Current/voltage dichotomy / Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System, ed. by T. Nishimura, O. Verkhoglyadova, and Y. Deng, Elsevier B.V. Amsterdam. 357-440. 2021. https://doi.org/10.1016/B978-0-12-821366-7.00005-6.
- Ridley A.J. Estimations of the uncertainty in timing the relationship between magnetospheric and solar wind processes // J. Atmos. Solar-Terr. Phys. V. 62. P. 757‒771. 2000. https://doi.org/10.1016/S1364-6826(00)00057-2.
- Safargaleev V., Kangas J., Kozlovsky A., Vasilyev A. Burst of ULF noise excited by sudden changes of solar wind dynamic pressure // Ann. Geophys. V. 20. P. 1751‒1761. 2002. https://doi.org/10.5194/angeo-20-1751-2002.
- Samsonov A.A., Nemeček Z., Šafránkova J. Numerical MHD modeling of propagation of interplanetary shock through the magnetosheath // J. Geophys. Res. V. 111. A08210. 2006. https://doi.org/10.1029/2005JA011537.
- Sibeck D.G. A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations // J. Geophys. Res. V. 95. P. 3755–3771.1990. https://doi.org/10.1029/JA095iA04p03755.
- Sibeck D.G. Transient events in the outer magnetosphere: Boundary waves or flux transfer events? // J. Geophys. Res. V. 97. 4009–4026. 1992. https://doi.org/10.1029/91JA03017
- Sibeck D.G., Trivedi N.B., Zesta E., Decker R.B, Singer H.J., Szabo A., Tachihara H., Watermann J. Pressure pulse interaction with the magnetosphere and ionosphere // J. Geophys. Res. V. 108. 1095. 2003. https://doi.org/10.1029/2002JA009675.
- Vorobjev V.G., Yagodkina O.I., and Zverev V.L. Morphological features of bipolar magnetic impulsive events and associated interplanetary medium signatures. // J. Geophys. Res. V. 104. P. 4595−4608. 1999. https://doi.org/10.1029/1998JA900042.
- Yahnin A., Titova E., Lubchich A., Bösinger T., Manninen J., Turunen T., Hansen T., Troshichev O., Kotikov A. Dayside high latitude magnetic impulsive events: their characteristics and relationship to sudden impulses // J. Atmos. Solar-Terr. Phys. V. 57. P. 1569–1582. 1995. https://doi.org/10.1016/0021-9169(95)00090-O.
- Yahnin A.G., Vorobjev V.G., Bösinger T., Rasinkangas R., Sibeck D.G., Newell P.T. On the source region of traveling convection vortices // Geophys. Res. Lett. V. 24. P. 237–240. 1997. https://doi.org/10.1029/96GL03969.
Arquivos suplementares
