Specific features of ionospheric disturbances accompanying the 14–20 January 2022 magnetic storm
- 作者: Kurkin V.I.1, Zolotukhina N.A.1, Ponomarchuk S.N.1, Oinats A.V.1, Ratovsky K.G.1
-
隶属关系:
- Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)
- 期: 卷 65, 编号 1 (2025)
- 页面: 103-117
- 栏目: Articles
- URL: https://j-morphology.com/0016-7940/article/view/684621
- DOI: https://doi.org/10.31857/S0016794025010092
- EDN: https://elibrary.ru/ADQVRU
- ID: 684621
如何引用文章
详细
We conducted the analysis of ionospheric disturbances that occurred during the moderate magnetic storm of 14–20 January 2022. The study is based on data of vertical and oblique ionospheric sounding obtained in the Northeastern region of Russia, and supplemented by observations at HF radars and magnetic observatories. It has been revealed that the amplitudes of positive and negative ionospheric disturbances accompanying this storm are comparable to those observed on other days of January during weak magnetic storms and disturbances. Specific features of the disturbances observed only during the storm in question are as follows: (1) a midnight–morning increase of the maximum observed frequency of one-hop mode of HF radio wave propagation on the paths Norilsk — Tory and Magadan — Tory on 14 January; (2) enhanced nighttime fluctuations in F2-layer critical frequency in Irkutsk and the maximum observed frequency of one-hop mode on the path Magadan — Tory on 15 January; (3) Morning–midday Es layers with limiting frequencies reaching 7 MHz that were observed in mid-latitudes at the end of the first and beginning of the second day of the storm recovery phase.
作者简介
V. Kurkin
Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)
编辑信件的主要联系方式.
Email: vikurkin@yandex.ru
俄罗斯联邦, Irkutsk, 664033
N. Zolotukhina
Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)
Email: zolot@iszf.irk.ru
俄罗斯联邦, Irkutsk, 664033
S. Ponomarchuk
Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)
Email: spon@iszf.irk.ru
俄罗斯联邦, Irkutsk, 664033
A. Oinats
Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)
Email: oinats@iszf.irk.ru
俄罗斯联邦, Irkutsk, 664033
K. Ratovsky
Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)
Email: ratovsky@iszf.irk.ru
俄罗斯联邦, Irkutsk, 664033
参考
- Данилов А.Д. Реакция области F на геомагнитные возмущения (обзор) // Гелиогеофизические исследования. Вып. 5. С. 1–33. 2013. http://vestnik.geospace.ru/index.php?id=189
- Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366–373. 2018. https://doi.org/10.7868/S0016794018030070
- Жеребцов Г.А., Пирог О.М. Динамика и макроструктура ионосферной плазмы / Энциклопедия низкотемпературной плазмы. Серия Б. Справочные приложения, базы и банки данных. Том I–3. Ионосферная плазма. Часть 1. Ред. В.Д. Кузнецов, Ю.Я. Ружин. М: Янус-К. С. 363–380. 2008.
- Кузнецов В.Д. Космическая погода и риски космической деятельности // Космическая техника и технологии. № 3 (6). С. 3–13. 2014. https://sciup.org/kosmicheskaja-pogoda-i-riski-kosmicheskoj-dejatelnosti-14343447
- Куркин В.И., Полех Н.М., Золотухина Н.А. Ионосферные эффекты слабых геомагнитных бурь в минимуме солнечной активности: весеннее равноденствие / Материалы всероссийской открытой научной конференции Армандовские чтения: Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн [Электронный ресурс]. С. 105–114. 2022. https://doi.org/ 10.24412/2304-0297-2022-1-105-114
- Пилипенко В.А. Воздействие космической погоды на наземные технологические системы // Солнечно-земная физика. Т. 7. № 3. С. 72–109. 2021. https://doi.org/ 10.12737/szf-73202106
- Подлесный А.В., Брынько И.Г., Куркин В.И., Березовский В.А., Киселёв А.М., Петухов Е.В. Многофункциональный ЛЧМ-ионозонд для мониторинга ионосферы // Гелиогеофизические исследования. Вып. 4. С. 24–31. 2013. http://vestnik.geospace.ru/index.php?id=166
- Полех Н.М., Золотухина Н.А., Романова Е.Б., Пономарчук С.Н., Куркин В.И., Подлесный А.В. Ионосферные эффекты магнитосферных и термосферных возмущений 17–19 марта 2015 г. // Геомагнетизм и аэрономия. T. 56. № 5. С. 591–605. 2016.
- Akasofu S.I. Energy coupling between the solar wind and the magnetosphere // Space Sci. Rev. V. 28. № 2. P. 121–190. 1981. https://doi.org/10.1007/BF00218810
- Anderson C.N. Correlation of long wave transatlantic radio transmission with other factors affected by solar activity // Proc. Inst. Radio Eng. V. 16. № 2. P. 297−347. 1928. https://doi.org/10.1109/JRPROC.1928.221400
- Borovsky J.E., Denton M.H. Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU // J. Geophys. Res. V. 115. № A10101. 2010. https://doi.org/10.1029/2009JA014966
- Buonsanto M.J. Ionospheric storms — a review // Space Sci. Rev. V. 88. № 3–4. P. 563–601. 1999. https://doi.org/10.1023/A:1005107532631
- Buresova D., Lastovicka J., Hejda P., Bochnicek J. Ionospheric disturbances under low solar activity conditions // Adv. Space Res. V. 54. P. 185–196. 2014. https://doi.org/10.1016/j.asr.2014.04.007
- Chen Y., Liu L., Le H., Zhang H., Zhang R. Responding trends of ionospheric F2-layer to weaker geomagnetic activities // J. Space Weather Space Clim. V. 12. № 6. 12 pp. 2022. https://doi.org/10.1051/swsc/2022005
- Ding F., Wan W., Liu L., Afraimovich E.L., Voeykov S.V., Perevalova N.P. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005 // J. Geophys. Res. V.113. № A00A01. 2008. https://doi.org/10.1029/2008JA013037
- Fuller-Rowell T.J., Codrescu M.V., Roble R.G., Richmond A.D. How does the thermosphere and ionosphere react to a geomagnetic storm? / Magnetic Storms / AGU Geophysical Monograph Series. V. 98. Eds. B. T. Tsurutani, W.D. Gonzalez, Y. Kamide, J.K. Arballo. American Geophysical Union, Washington, D.C. P. 203−225. 1997.
- Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? // J. Geophys. Res. V. 99. Iss. A4. P. 5771–5792. 1994. https://doi.org/10.1029/93JA02867
- Goodman J.M., Ballard J.W., Patterson J.D., Gaffney B. Practical measures for combating communication system impairments caused by large magnetic storms // Radio Sci. V. 41. № 6. RS6S41. 2006. https://doi.org/10.1029/2005RS003404
- Hunsucker R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: a review // J. Geophys. Res. V. 20. № 2. P. 293−315. 1982.
- Kurkin V.I., Pirog O.M., Polekh N.M., Mikhalev A.V., Poddelsky I.N., Stepanov A.E. Ionospheric response to geomagnetic disturbances in the north-eastern region of Asia during the minimum of 23rd cycle of solar activity // J. Atmos. Sol.-Terr. Phys. V. 70. № 18. P. 2346–2357. 2008.
- Kurkin V.I., Polekh N.M., Zolotukhina N.A. Effect of weak magnetic storms on the propagation of hf radio waves // Geomagnetism and Aeronomy. V. 62. № 1–2. С. 104–115. 2022. https://doi.org/ 10.1134/S0016793222020116
- Loewe C.A., Prolss G.W. Classification and mean behavior of magnetic storm // J. Geophys. Res. V. 102. № A7. P. 14209–14213. 1997. https://doi.org/ 10.1029/96JA04020
- Marmet P. New digital filter for the analysis of experimental data // Rev. Sci. Instrum. V. 50. № 1. P. 79–83. 1979. https://doi.org/ 10.1063/1.1135673
- Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content // Rev. Geophys. V. 44. RG4001. 2006. https://doi.org/10.1029/2005RG000193
- Mikhailov A.V., Depueva A.Kh., Leschinskaya T.Yu. Morphology of quiet time F2-layer disturbances: high and lower latitudes // Int. J. Geomagn. Aeron. V. 5. № 1. GI1006. 2004. https://doi.org/ 10.1029/2003GI000058
- Mikhailov A.V., Perrone L., Nusinov A.A. Mid-latitude daytime F2-layer disturbance mechanism under extremely low solar and geomagnetic activity in 2008–2009 // Remote Sens. 13. 1514. 2021. https://doi.org/10.3390/rs13081514
- Paznukhov V.V., Altadill D., Reinisch B.W. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes // J. Geophys. Res. V. 114. № A12319. 2009. https://doi.org/10.1029/2009JA014479
- Perrone L., Mikhailov A.V., Nusinov A.A. Daytime mid-latitude F2-layer Q-disturbances: A formation mechanism // Sci Rep. V. 10. 9997. 2020. https://doi.org/10.1038/s41598-020-66134-2
- Pickard G.W. The correlation of radio reception with solar activity and terrestrial magnetism // Proc. Inst. Radio Eng. V. 15. № 2. P. 83−97. 1927. https://doi.org/10.1109/JRPROC.1927.221165
- Prölss G.W. Magnetic storm associated perturbations of the upper atmosphere / Magnetic Storms / AGU Geophysical Monograph Series. V. 98. Eds. B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, J.K. Arballo. American Geophysical Union, Washington, D.C. P. 227−241. 1997.
- Prölss G.W. Ionospheric F-region storms: Unsolved problems / Characterizing the Ionosphere. Meeting Proc. RTO-MP-IST-056. Fairbanks, United States, 12–16 June 2006. Neuilly-sur-Seine, France. V. 10. P. 10-1–10-20. 2006.
- Ratovsky K.G., Klimenko M.V., Dmitriev A.V., Medvedeva I.V. Relation of extreme ionospheric events with geomagnetic and meteorological activity // Atmosphere. V. 13. № 1. P. 146. 2022. https://doi.org/ 10.3390/atmos13010146
- Tang Q., Sun H., Du Z., Zhao J., Liu Y., Zhao Z., Feng X. Unusual enhancement of midlatitude sporadic-E layers in response to a minor geomagnetic storm // Atmosphere. V. 13. № 5. P. 816. 2022. https://doi.org/10.3390/atmos13050816
- Vargin P.N., Koval A.V., Guryanov V.V. Arctic stratosphere dynamical processes in the winter 2021–2022 // Atmosphere. V. 13. № 10. P.1550. 2022. https://doi.org/10.3390/atmos13101550
- Zhang S-R., Vierinen J., Aa E. et al. Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb Waves // Front. Astron. Space Sci. 9:871275. 2022. https://doi.org/ 10.3389/fspas.2022.871275
- URL Intermag: https://intermagnet.org/
- URL qd: https://wdc.kugi.kyoto-u.ac.jp/qddays/index.html
- URL OMNI2: https://cdaweb.gsfc.nasa.gov/cdaweb/istp_public/
- URL Oval: https://ssusi.jhuapl.edu/gal_edr-aur_cs
- URL SME: https://supermag.jhuapl.edu/indices/
补充文件
