Атомно-силовая микроскопия и строительная частица во флуктуационной теории роста кристалла

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Обсуждаются особенности применения низкоэнергетического атомно-силового микроскопа (АСМ) для изучения динамического процесса роста грани с позиции флуктуационной модели роста кристалла. Показано, что взаимодействие зонда с участком растущей поверхности кристалла в масштабе времени, характерном для последовательности флуктуаций свободной энергии, служит ограничивающим фактором для построения изображения поверхности растущей грани. Продемонстрировано согласие феноменологического и квантового (по соотношению неопределенностей) описаний эффекта предельного увеличения растущей грани кристалла в АСМ. Обсуждаются также особенности регистрации роста ступени на грани кристалла с помощью просвечивающего/сканирующего электронного микроскопа высокого разрешения в газовой среде. Эффект предельного увеличения при наблюдении роста в АСМ служит основанием для обсуждения концепции переходного состояния вещества при топохимической реакции роста кристалла и феномена строительной частицы.

Ключевые слова

Об авторах

В. И. Ракин

Институт геологии ФИЦ Коми НЦ УрО РАН

Автор, ответственный за переписку.
Email: rakin@geo.komisc.ru
Россия, Сыктывкар

Список литературы

  1. Binnig G., Quate C.F., Gerber Ch. // Phys. Rev. Lett. 1986. V. 56. P. 930.
  2. De Yoreo J.J., Land T.A., Lee J.D. // Phys. Rev. Lett. 1997. V. 78. № 23. P. 4462.
  3. Yaminsky I.V., Gvozdev N.V., Sil’nikova M.I., Rashkovich L.N. // Crystallography Reports. 2002. V. 47. Suppl. 1. P. S149.
  4. Рашкович Л.Н., Петрова Е.В., Шустин О.А., Черневич Т.Г. // ФТТ. 2003. Т. 45. Вып. 2. С. 377.
  5. Piskunova N.N., Rakin V.I. // J. Cryst. Growth. 2005. V. 275. e1661.
  6. Ковальчук М.В., Толстихина А.Л. // Сб. Физика кристаллизации. К столетию Г.Г. Леммлейна. М.: Физматлит, 2002. С. 317.
  7. Бор Н. Атомная физика и человеческое познание. М.: Изд-во иностр. лит. 1961. 151 с.
  8. Чернов А.А. // Успехи физ. наук. 1961. Т. 73. Вып. 2. С. 277.
  9. Rakin V.I. // Crystallography Reports. 2016. V. 61. № 3. P. 517. https://doi.org/10.1134/S1063774516020152
  10. Rakin V.I. // Crystallography Reports. 2022. V. 67. № 7. P. 1259. https://doi.org/10.1134/S1063774522070252
  11. Хинчин А.Я. Предельные теоремы для сумм независимых случайных величин. М.; Л.: ОНТИ НКТП СССР, 1938. 116 с.
  12. Методологические аспекты сканирующей зондовой микроскопии. Сб. докл. IX междунар. конференции. Минск. 2010. С. 268.
  13. Ландау Л.Д. // Сборник, посвященный семидесятилетию академика А.Ф. Иоффе. М.: Наука, 1950. С. 44.
  14. Miyata K., Asakawa H., Fukuma T. // Abstracts ACSIN-12 & ICSPM21, November 4–8. 2013. Tsukuba. Japan. 6pB1-3.
  15. Harmand J.C., Patriarche G., Glas F. et al. // Phys. Rev. Lett. 2018. V. 121. № 16. P. 166101.
  16. Panciera F., Baraissov Z., Patriarche G. et al. // Nano Lett. 2020. V. 20. № 3. P. 1669.
  17. Zhang H., Xu T., Zhu Y. et al. // Nanomaterials. 2021. № 11. P. 1021.
  18. Dong Z., Zhang L., Wang S., Luo L. // NanoEnergy. 2020. № 70. P. 104527.
  19. Гликин А.Э. Полиминерально-метасоматический кристаллогенез. СПб.: Изд-во “Журнал “Нева””, 2004. 320 с.
  20. Пригожин И. Введение в термодинамику необратимых процессов. М.: Изд-во иностр. лит., 1960. 128 с.
  21. Штиллер В. Уравнение Аррениуса и неравновесная кинетика: Пер с англ. М.: Мир, 2000. 176 с.
  22. Эйринг Г., Лин С.Г., Лин С.М. Основы химической кинетики: Пер. с англ. М.: Мир,1983. 528 с.
  23. Hammond G.S. // J. Am. Chem. Soc. 1955. V. 77. P. 334.
  24. Rakin V.I. // Crystallography Reports. 2022. V. 67. № 2. P. 294. https://doi.org/10.1134/S1063774522020122

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023