Грибы арктических морей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучены численность и разнообразие мицелиальных грибов в донных отложениях морей Северного Ледовитого океана — Гренландского, Баренцева и Карского. Пробы поверхностных донных отложений были отобраны в 84-м (июль‒август 2021 г.) и 86-м (октябрь‒ноябрь 2021 г.) рейсах НИС “Академик Мстислав Келдыш”. Таксономическую принадлежность выделенных грибов определяли с помощью полифазной таксономии. Выделенные грибы были отнесены к 16 родам разных классов аскомицетовых, базидиомицетовых и зигомицетовых грибов. Было определено влияние температуры и разных концентраций NaCl в среде на рост грибов, а также влияние условий культивирования на профиль жирных кислот для штаммов, способных к росту на средах с повышенным осмотическим потенциалом. Показано, что состав жирных кислот изменяется в зависимости от условий солености среды, но ответ на осмостресс у изученных культур из глубоководных донных отложений различается.

Полный текст

Доступ закрыт

Об авторах

Г. А. Кочкина

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина, ФИЦ Пущинский научный центр биологических исследований РАН

Автор, ответственный за переписку.
Email: gak@dol.ru
Россия, Пущино

И. П. Пинчук

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина, ФИЦ Пущинский научный центр биологических исследований РАН

Email: gak@dol.ru
Россия, Пущино

Н. Е. Иванушкина

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина, ФИЦ Пущинский научный центр биологических исследований РАН

Email: gak@dol.ru
Россия, Пущино

А. Н. Автух

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина, ФИЦ Пущинский научный центр биологических исследований РАН

Email: gak@dol.ru
Россия, Пущино

Н. В. Пименов

Институт микробиологии им. С.Н. Виноградского, ФИЦ биотехнологии РАН

Email: gak@dol.ru
Россия, Москва

Список литературы

  1. Бубнова Е. Н., Бондаренко С. А., Георгиева М. Л. Первые сведения о грибах арктических морей Сибири // Труды VIII Международной научно-практической конференции “Морские исследования и образование (MARESEDU-2019)”. Т. I (III). Тверь: ООО “ПолиПРЕСС”, 2020. С. 383‒384.
  2. Бубнова Е. Н., Коновалова О. П. Грибы в донных грунтах Чукотского моря // Биология моря. 2019. Т. 45. № 2. С. 86‒96. https://doi.org/10.1134/S0134347519020025
  3. Бубнова Е. Н., Никитин Д. А. Грибы в донных грунтах Баренцева и Карского морей // Биология моря. 2017. Т. 43. С. 366‒371.
  4. Bubnova E. N., Nikitin D. A. Fungi in bottom sediments o the Barents and Kara Seas // Russ. J. Mar. Biol. 2017. V. 43. P. 400‒406.
  5. Конова И. В., Сергеева Я. Э., Галанина Л. А., Кочкина Г. А., Иванушкина Н. Е., Озерская С. М. Липогенез грибов Geomyces pannorum при воздействии стрессоров // Микробиология. 2009. Т. 78. С. 52‒58.
  6. Konova I. V., Sergeeva Ya.E., Galanina L. A., Kochkina G. A., Ivanushkina N E., Ozerskaya S. M. Lipid synthesis by Geomyces pannorum under the impact of stress factors // Microbiology (Moscow). 2009. V. 78. P. 42–47.
  7. Кочкина Г. А., Иванушкина Н. Е., Акимов В. Н., Гиличинский Д. А., Озерская С. М. Галопсихротолерантные грибы рода Geomyces из криопэгов и морских отложений Арктики // Микробиология. 2007. Т. 76. С. 39‒47.
  8. Kochkina G. A., Ivanushkina N. E., Akimov V. N., Gilchinsky D. A., Ozerskaya S. M. Halopsychrotolerant fungi of the genus Geomyces from cryopegs and marine sediments of the Arctic // Microbiology (Moscow). 2007. V. 76. P. 39–47.
  9. Кочкина Г. А., Озерская С. М., Иванушкина Н. Е., Чигинева Н. И., Василенко О. В., Спирина Е. В., Гиличинский Д. А. Разнообразие грибов деятельного слоя Антарктиды // Микробиология. 214. Т. 83. С. 236‒244. https://doi.org/10.7868/s002636561402013x
  10. Kochkina G. A., Ozerskaya S. M., Ivanushkina N. E., Chigineva N. I., Vasilenko O. V., Spirina E. V., Gilichinskii D. A. Fungal diversity in the Antarctic active layer // Microbiology (Moscow). 2014. V. 83. P. 94‒101.
  11. Мамаева Е. В., Галачьянц Ю. П., Хабудаев К. В., Петрова Д. П., Погодаева Т. В., Ходжер Т. В., Земская Т. И. Метагеномный анализ микробных сообществ донных осадков шельфа Карского моря и Енисейского залива // Микробиология. 2016. Т. 85. С. 187–198.
  12. Mamaeva E. V., Galach’yants Y.P., Khabudaev K. V., Petrova D. P., Pogodaeva T. V., Khodzher T. B., Zemskaya T. I. Metagenomic analysis of microbial communities of the sediments of the Kara Sea shelf and the Yenisei Bay // Microbiology (Moscow). 2016. V. 85. P. 220–230.
  13. Озерская С. М., Кочкина Г. А., Иванушкина Н. Е., Князева Е. В., Гиличинский Д. А. Структура комплексов микромицетов в многолетнемерзлых грунтах и криопэгах Арктики // Микробиология. 2008. Т. 77. С. 542‒550.
  14. Ozerskaya S. M., Kochkina G. A., Ivanushkina N. E., Knyazeva E. V., Gilichinskii D. A. The structure of micromycete complexes in permafrost and cryopegs of the Arctic // Microbiology (Moscow). 2008. Т. 77. P. 482‒489.
  15. Стахов В. Л., Губин С. В., Максимович С. В., Ребриков Д. А., Савилова А. М., Кочкина Г. А., Озерская С. М., Иванушкина Н. Е., Воробьева Е. А. Микробные сообщества древних семян, извлеченных из многолетнемерзлых плейстоценовых отложений // Микробиология. 2008. Т. 77. С. 396‒403.
  16. Stakhov V. L., Gubin S. V., Maksimovich S. V., Rebrikov D. V., Savilova A. M., Kochkina G. A., Ozerskaya S. M., Ivanushkina N. E., Vorobyova E. A. Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits // Microbiology (Moscow). 2008. V. 77. P. 348‒355.
  17. Хуснуллина А. И., Биланенко Е. Н., Кураков А. В. Микроскопические грибы донных грунтов Белого моря // Сибирский экологический журнал. 2018. Т. 25. С. 584‒598. https://doi.org/10.15372/SEJ20180507
  18. Khusnullina A. I., Bilanenko E. N., Kurakov A. V. Microscopic fungi of White Sea sediments // Contemp. Probl. Ecol. 2018. V. 11. P. 503‒513.
  19. Begmatov S., Savvichev A. S., Kadnikov V. V., Beletsky A. V., Rusanov I. I., Klyuvitkin A. A., Novichkova E. A., Mardanov A. V., Pimenov N. V. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea // Microorganisms. 2021. V. 9. Art. 2362. https://doi.org/10.3390/microorganisms9112362
  20. Burgaud G., Hué N. T.M., Arzur D., Coton M., Perrier-Cornet J.M., Jebbar M., Barbier G. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents // Res. Microbiol. 2015. V. 166. P. 700‒709. https://doi.org/10.1016/j.resmic.2015.07.005
  21. Carré L., Zaccai G., Delfosse X., Girard E., Franzetti B. Relevance of earth-bound extremophiles in the search for extraterrestrial life // Astrobiology. 2022. V. 22. P. 322‒367. https://hal.science/hal-03819312
  22. Cox F., Newsham K. K., Bol R., Dungait J. A.J., Robinson C. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic // Ecol. Lett. 2016. V. 19. P. 528–536. https://doi.org/10.1111/ele.12587
  23. de Hoog G. S., Zalar P., van den Ende B. G., Gunde-Cimerman N. Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress // Adaptation to life at high salt concentrations in Archaea / Eds. Gunde-Cimerman N., Oren A., Plemenitas A. Dordrecht: Springer, 2005. P. 371‒397.
  24. Ding Z., Li L., Che Q., Li D., Gu Q., Zhu T. Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica // Extremophiles. 2016. V. 20. P. 425–435. https://doi.org/10.1007/s00792-016-0833-y
  25. Hagestad O. C., Andersen J. H., Altermark B., Hansen E., Rämä T. Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity // Mycology. 2020. V. 11. P. 230‒242. https://doi.org/10.1080/21501203.2019.1708492
  26. Hayashi Y., Eguchi H., Toibana T., Mitamura Y., Yaguchi T. Polymicrobial sclerokeratitis caused by Scedosporium apiospermum and Aspergillus cibarius // Cornea. 2014. V. 33. P. 75‒877.
  27. Ivanushkina N. E., Kochkina G. A., Ozerskaya S. M. Fungi in ancient permafrost sediments of the Arctic and Antarctic regions // Life in Ancient ice / Eds. J. Castello, S. Rogers. Ch. 9. Proc. Prins. Univ. Princeton: Princeton Univ. Press, 2005. P. 127‒139.
  28. Jin L., Quan C., Hou X., Fan S. Potential pharmacological resources: natural bioactive compounds from marine-derived fungi // Mar. Drugs. 2016. V. 14. Art. 76. https://doi.org/10.3390/md14040076
  29. Kochkina G. A., Ivanushkina N. E., Lupachev A. V., Starodumova I. P., Vasilenko O. V., Ozerskaya S. M. Diversity of mycelial fungi in natural and human-affected Antarctic soils // Polar Biol. 2019. V. 42. P. 47–64. https://doi.org/10.1007/s00300-018-2398-y
  30. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. P. 1547‒1549. https://doi.org/10.1093/molbev/msy096
  31. Leong S. L. L., Lantz H., Pettersson O. V., Frisvad J. C., Thrane U., Heipieper H. J., Dijksterhuis J., Grabherr M., Pettersson M., Tellgren-Roth C., Schnürer J. Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date // Environ. Microbiol. 2015. V. 17. P. 496‒513.
  32. Luo M., Zang R., Wang X., Chen Z., Song X., Ju J., Huang H. Natural hydroxamate-containing siderophore acremonpeptides A–D and an aluminum complex of acremonpeptide D from the marine-derived Acremonium persicinum SCSIO 115 // J. Nat. Prod. 2019. V. 82. P. 2594‒2600. https://doi.org/10.1021/acs.jnatprod.9b00545
  33. Luo Y., Xu W., Luo Zh.-H., Pang K.-L. Diversity and temperature adaptability of cultivable fungi in marine sediments from the Chukchi Sea // Bot. Mar. 2020. V. 63. P. 197‒207. https://doi.org/10.1515/bot-2018–0119
  34. Margesin R., Miteva V. Diversity and ecology of psychrophilic microorganisms // Res. Microbiol. 2011. V. 162. P. 346‒361. https://doi.org/10.1016/j.resmic.2010.12.004
  35. Martorell M. M., Ruberto L. A.M., Fernandez P. M., De Figueroa L. I.C., Mac Cormack W. P. Biodiversity and enzymes bioprospection of Antarctic filamentous fungi // Antarct. Sci. 2019. V. 31. P. 3‒12. https://doi.org/10.1017/S0954102018000421
  36. Namsaraev Z., Kozlova A., Tuzov F., Krylova A., Izotova A., Makarov I., Bezgreshnov A., Melnikova A., Trofimova A., Kuzmin D., Patrushev M., Toshchakov S. Biogeographic analysis suggests two types of planktonic prokaryote communities in the Barents Sea // Biology. 2023. V. 12. Art. 1310. https://doi.org/10.3390/biology12101310
  37. Ogaki M. B., Pinto O. H.B., Vieira R., Neto A. A., Convey P., Carvalho-Silva M., Rosa C. A., Camara P., Rosa L. H. Fungi present in Antarctic deep-sea sediments assessed using DNA metabarcoding // Microb. Ecol. 2021. V. 82. P. 157‒164. https://doi.org/10.1007/s00248-020-01658-8
  38. Ozerskaya S., Kochkina G., Ivanushkina N., Gilichinsky D. Fungi in permafrost // Permafrost soils / Ed. R. Margesin (Austria). Berlin‒Heidelberg: Springer Verlag, 2009. P. 85‒95. https://doi.org/10.1007/978-3-540-69371-0_7
  39. Rapp J. Z., Fernández-Méndez M., Bienhold C., Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the Central Arctic Ocean // Front. Microbiol. 2018. V. 9. Art. 1035.
  40. Rice A. V., Currah R. S. Oidiodendron: A survey of the named species and related anamorphs of Myxotrichum // Stud. Mycol. 2005. V. 53. P. 83‒120. https://doi.org/10.3114/sim.53.1.83
  41. Ryvarden L., Melo I. Poroid fungi of Europe // Synopsis Fungorum. V. 37. Oslo: Fungiflora A/S, 2017. 431 p.
  42. Sarkar S., Singh N. A., Rai N. Xerophilic fungi: physiology, genetics and biotechnology // Extremophilic fungi / Eds. Sahay S. Singapore: Springer Nature, 2022. P. 253‒270.
  43. Savvichev A. S., Rusanov I. I., Kadnikov V. V., Beletsky A. V., Zakcharova E. E., Samylina O. S., Sigalevich P. A., Semiletov I. P., Ravin N. V., Pimenov N. V. Biogeochemical activity of methane-related microbial communities in bottom sediments of cold seeps of the Laptev Sea // Microorganisms. 2023. V. 11. Art. 250. https://doi.org/10.3390/microorganisms11020250
  44. Sayed A. M., Hassan M. H., Alhadrami H. A., Hassan H. M., Goodfellow M., Rateb M. E. Extreme environments: microbiology leading to specialized metabolites // J. Appl. Microbiol. 2020. V. 128. P. 630‒657. https://doi.org/10.1111/jam.14386
  45. Shukla S., Shukla H. Ecology, physiology, and diversity of piezophilic fungi // Extremophilic fungi / Singapore: Springer Nature Singapore, 2022. P. 141‒170. https://doi.org/10.1007/978-981-16-4907-3_8
  46. Simonato F., Campanaro S., Lauro F. M., Vezzi A., D’Angelo M., Vitulo N., Valle G., Bartlett D. H. Piezophilic adaptation: a genomic point of view // J. Biotechnol. 2006. V. 126. P. 11‒25. https://doi.org/10.1016/j.jbiotec.2006.03.038
  47. Wang Y. N., Meng L. H., Wang B. G. Progress in research on bioactive secondary metabolites from Deep-Sea derived microorganisms // Mar. Drugs. 2020. V. 18. Art. 614. https://doi.org/10.3390/md18120614
  48. Yurchenko A. N., Girich E. V., Yurchenko E. A. Metabolites of marine sediment-derived fungi: Actual trends of biological activity studies // Mar. Drugs. 2021. V. 19. P. 88. https://doi.org/10.3390/md19020088

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Классы мицелиальных грибов

Скачать (235KB)

© Российская академия наук, 2024