Influence of direct seeding technology on respiration of chernozem-like soils of Amur region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Soil CO2 emission was measured by the field chamber method in the experiment on application of no-till technology (without tillage) on chernozem soils of the Amur region of Russia, where 30% of the country’s soybeans are grown. One-factor and two-factor models for estimation of soil respiration per year were constructed based on the data of field measurements for 2022–2024. Soil temperature is a reasonably good predictor of emission (R2 = 0.8, p < 0.001), which allows us to use continuous soil temperature series from loggers to calculate seasonal fluxes at a frequency of 6 times per day. Total annual flux in the experimental plot (no-till) was 0.69 t C/ha or 23.6% lower than in the control plot (conventional tillage). The contribution of the summer period to the annual flux was 59%. The two-factor T&P-model (temperature and precipitation) showed an overestimation of annual flux by 40%. Application of air temperature from the nearest weather station for modeling gave an underestimation of total flux by 13–20%. The no-till plot showed higher water-soluble carbon (2.5 and 3.8%, p = 0.055) and nitrogen (0.3 and 0.6%, p = 0.0025) relative to the conventional plot. Switching to no-till technology increases the density of the upper soil horizons by 8–12%, but the density remains within the optimum for soybean. In the no-till plot, soil volumetric moisture is also consistently higher (by 38% on average in the 0-5 cm layer), which is a strategically important advantage due to frequent periods of moisture deficiency.

Full Text

Restricted Access

About the authors

А. V. Ivanov

Institute of Geology and Nature Management of the Russian Academy of Sciences

Author for correspondence.
Email: aleksandrgg86@mail.ru
ORCID iD: 0000-0003-4560-9824
Russian Federation, Blagoveshchensk

V. V. Getmanskii

Far Eastern State Agrarian University

Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk

P. V. Tihonchuk

Far Eastern State Agrarian University

Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk

O. А. Selikhova

Far Eastern State Agrarian University

Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk

A. V. Danilov

Institute of Geology and Nature Management of the Russian Academy of Sciences

Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk

O. A. Piletskaya

Institute of Geology and Nature Management of the Russian Academy of Sciences

Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk

References

  1. Алферов А.М., Блинов В.Г., Гитарский М.Л., Грабар В.А. и др. Мониторинг потоков парниковых газов в природных экосистемах. Саратов: Амирит, 2017. 279 с.
  2. Гетманский В.В., Тихончук П.В., Захарова Е.Б. Влияние прямого посева на фотосинтетическую деятельность сои сорта Дебют // Агропромышленный комплекс: проблемы и перспективы развития. Мат. межд. конф. Благовещенск, 2024. С. 37–45.
  3. Голов Г.В. Почвы и экология агрофитоценозов Зейско-Буреинской равнины. Владивосток: Дальнаука, 2001. 160 с.
  4. Григорьева В.З., Шкрабтак Н.В., Праскова Ю.А., Пеков Д.Б. Государственная поддержка развития отрасли растениеводства в Амурской области // Фундаментальные исследования. 2021. № 4. C. 35–41.
  5. Дридигер В.К., Иванов А.Л., Кулинцев В.В., Белобров В.П. Чернозем обыкновенный. Прямой посев, Ставропольский край. Опыт, две ротации. Ставрополь: Сервисшкола, 2024. 356 с.
  6. Казеев К.Ш., Мокриков Г.В., Акименко Ю.В., Мясникова М.А., Колесников С.И. Экологическая оценка применения технологии No-Till в Ростовской области. Ростов-на-Дону: Таганрог: Изд-во ЮФУ, 2018. 332 с.
  7. Овсинский И.Е. Новая система земледелия. М., 1911. 288 с.
  8. Пустовойтов Н.Д. Сезонно-мерзлотные почвы и их мелиорация. М.: Наука, 1971. 231 с.
  9. Рахимова Ю.М., Дозоров А.В., Подсевалов М.И., Наумов А.Ю. Влияние различных приёмов основной обработки и применения гербицидов в посевах сои на агрофизические показатели плодородия почвы // Вестник Ульяновской гос. с./х. академии. 2013. № 4. С. 6–13.
  10. Турин Е.Н. Преимущества и недостатки системы земледелия прямого посева в мире (обзор) // Таврический вестник аграрной науки. 2020 № 2. С. 150–168.
  11. Федюнин С.А., Васильев И.В., Сапрыкин Н.П. Перспективные технологии возделывания сои в условиях Оренбуржья // Известия Оренбургского гос. аграрного ун-та. 2017. № 2. С. 27–29.
  12. Ямковой В.А. Соя – фирменная культура Амурской области // Вопросы географии Верхнего Приамурья. 2019. № 6. С. 101–119.
  13. Abdalla K., Chivenge P., Ciais P., Chaplot V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis // Biogeosciences. 2016. V. 13. P. 3619–3633. https://doi.org/10.5194/bg-13-3619-2016
  14. Bokova A.I., Panina K.S., Dridiger V.K., Gadzhiumarov R.G., Kuznetsova N.A., Potapov M.B. Soil-dwelling springtails as indicators of the efficiency of No-till technologies with different amounts of mineral fertilizers in the crop rotation on chernozem soils // Soil Till. Res. 2023. V. 232. P. 105760. https://doi.org/10.1016/j.still.2023.105760
  15. Breil N.L., Lamaze T., Bustillo V., Marcato-Romain C., Coudert B., Queguiner S., Jarosz-Pelle N. Combined impact of no-tillage and cover crops on soil carbon stocks and fluxes in maize crops // Soil Till. Res. 2023. V. 233. P. 105782. https://doi.org/10.1016/j.still.2023.105782
  16. Buragiene S., Sarauskis E., Romaneckas K., Adamaviciene A., Kriauciuniene Z., Avizienyte D., Marozas V., Naujokiene V. Relationship between CO2 emissions and soil properties of differently tilled soils // Sci. Total Environm. 2019. V. 662. P. 786–795. https://doi.org/10.1016/j.scitotenv.2019.01.236
  17. Chataut G., Bhatta B., Joshi D., Subedi K., Kafle K. Greenhouse gases emission from agricultural soil: a review // J. Agric. Food Res. 2023. V. 11. P. 100533. https://doi.org/10.1016/j.jafr.2023.100533
  18. Chen Z., Leffler A.J. Soil basal respiration and nitrogen mineralization from C3 and C4 grass dominated plant communities respond differently to temperature and soil water variation // J. Arid Env. 2024. V. 224. P. 105235. https://doi.org/10.1016/j.jaridenv.2024.105235
  19. Gelybo G., Barcza Z., Dencso M., Potyo I., Kasa I., Horel A., Pokovai K. et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate // Soil Till. Res. 2022. V. 216. P. 105239. https://doi.org/10.1016/j.still.2021.105239
  20. Graham M.W., Thomas R.Q., Lombardozzi D.L., O’Rourke M.E. Modest capacity of no-till farming to offset emissions over 21st century // Environ. Res. Lett. 2021. V. 16. P. 054055. https://doi.org/10.1088/1748-9326/abe6c6
  21. Ivanov A.V., Zamolodchikov D.G., Salo M.A., Kondratova A.V., Piletskaya O.A., Bryanin S.V. Soil respiration in forest ecosystems in the south of the far east // Eurasian Soil Sc. 2023. V. 56. № 9. P. 1201–1209. https://doi.org/10.1134/S1064229323601142
  22. Kassam A., Friedrich T., Derpsch R. Successful experiences and lessons from conservation agriculture worldwide // Agronomy. 2022. V. 12. № 769. P. 1–19. https://doi.org/10.3390/agronomy12040769
  23. Kurganova I.N., Lopes de Gerenyu V.O., Myakshina T.N., Sapronov D.V., Zhmurin V.A., Kudeyarov V.N., Romashkin I.V. Experimental and model estimates of respiration of the forest sod-podzolic soil in the Prioksko-Terrasny nature reserve // Contemporary Problems of Ecology. 2020. V. 13. P. 813–824. https://doi.org/10.1134/S1995425520070057
  24. Kudeyarov V.N. Soil respiration and carbon sequestration: a review // Eurasian Soil Sc. 2023. V. 56. P. 1191–1200. https://doi.org/10.1134/S1064229323990012
  25. Mondal S., Chakraborty D., Paul R.K., Mondal A., Ladha J.K. No-till is more of sustaining the soil than a climate change mitigation option // Agriculture, Ecosyst. Env. 2023. V. 352. P. 108498. https://doi.org/10.1016/j.agee.2023.108498
  26. Potapov P., Turubanova S., Hansen M.C. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century // Nat Food. 2022. V. 3. P. 19–28. https://doi.org/10.1038/s43016-021-00429-z

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variability of soil and air temperatures at measurement sites (a) and seasonal dynamics of CO2 emissions from the soil surface (b). (a) Ta is the air temperature, Ts-n is the soil temperature at the no-till site, Ts-t is the soil temperature at the site with traditional technology, (b) 1 is the no-till technology, 2 is the traditional technology.

Download (1MB)
3. Fig. 2. Changes in soil density (a) and volumetric moisture in the 0–5 cm layer (b) at the studied sites depending on the soil cultivation technology (1 – no-till, 2 – traditional).

Download (760KB)
4. Fig. 3. Annual carbon fluxes by seasons of the year in plots without soil cultivation (N) and with traditional soil cultivation (T), obtained using four calculation options: single-factor models with predictors – soil temperature (S), air temperature at measurement sites (A), air temperature at the weather station (M) and the T&P model.

Download (1003KB)
5. Fig. 4. Carbon content (a) and carbon stock cumulative curves (b) in soil layers in areas with (1) and without soil cultivation (2).

Download (599KB)

Copyright (c) 2025 Russian Academy of Sciences