Influence of direct seeding technology on respiration of chernozem-like soils of Amur region
- Authors: Ivanov А.V.1, Getmanskii V.V.2, Tihonchuk P.V.2, Selikhova O.А.2, Danilov A.V.1, Piletskaya O.A.1
-
Affiliations:
- Institute of Geology and Nature Management of the Russian Academy of Sciences
- Far Eastern State Agrarian University
- Issue: No 7 (2026)
- Pages: 932-942
- Section: SOIL PHYSICS
- URL: https://j-morphology.com/0032-180X/article/view/687386
- DOI: https://doi.org/10.31857/S0032180X25070044
- EDN: https://elibrary.ru/HTISKU
- ID: 687386
Cite item
Abstract
Soil CO2 emission was measured by the field chamber method in the experiment on application of no-till technology (without tillage) on chernozem soils of the Amur region of Russia, where 30% of the country’s soybeans are grown. One-factor and two-factor models for estimation of soil respiration per year were constructed based on the data of field measurements for 2022–2024. Soil temperature is a reasonably good predictor of emission (R2 = 0.8, p < 0.001), which allows us to use continuous soil temperature series from loggers to calculate seasonal fluxes at a frequency of 6 times per day. Total annual flux in the experimental plot (no-till) was 0.69 t C/ha or 23.6% lower than in the control plot (conventional tillage). The contribution of the summer period to the annual flux was 59%. The two-factor T&P-model (temperature and precipitation) showed an overestimation of annual flux by 40%. Application of air temperature from the nearest weather station for modeling gave an underestimation of total flux by 13–20%. The no-till plot showed higher water-soluble carbon (2.5 and 3.8%, p = 0.055) and nitrogen (0.3 and 0.6%, p = 0.0025) relative to the conventional plot. Switching to no-till technology increases the density of the upper soil horizons by 8–12%, but the density remains within the optimum for soybean. In the no-till plot, soil volumetric moisture is also consistently higher (by 38% on average in the 0-5 cm layer), which is a strategically important advantage due to frequent periods of moisture deficiency.
Keywords
Full Text

About the authors
А. V. Ivanov
Institute of Geology and Nature Management of the Russian Academy of Sciences
Author for correspondence.
Email: aleksandrgg86@mail.ru
ORCID iD: 0000-0003-4560-9824
Russian Federation, Blagoveshchensk
V. V. Getmanskii
Far Eastern State Agrarian University
Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk
P. V. Tihonchuk
Far Eastern State Agrarian University
Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk
O. А. Selikhova
Far Eastern State Agrarian University
Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk
A. V. Danilov
Institute of Geology and Nature Management of the Russian Academy of Sciences
Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk
O. A. Piletskaya
Institute of Geology and Nature Management of the Russian Academy of Sciences
Email: aleksandrgg86@mail.ru
Russian Federation, Blagoveshchensk
References
- Алферов А.М., Блинов В.Г., Гитарский М.Л., Грабар В.А. и др. Мониторинг потоков парниковых газов в природных экосистемах. Саратов: Амирит, 2017. 279 с.
- Гетманский В.В., Тихончук П.В., Захарова Е.Б. Влияние прямого посева на фотосинтетическую деятельность сои сорта Дебют // Агропромышленный комплекс: проблемы и перспективы развития. Мат. межд. конф. Благовещенск, 2024. С. 37–45.
- Голов Г.В. Почвы и экология агрофитоценозов Зейско-Буреинской равнины. Владивосток: Дальнаука, 2001. 160 с.
- Григорьева В.З., Шкрабтак Н.В., Праскова Ю.А., Пеков Д.Б. Государственная поддержка развития отрасли растениеводства в Амурской области // Фундаментальные исследования. 2021. № 4. C. 35–41.
- Дридигер В.К., Иванов А.Л., Кулинцев В.В., Белобров В.П. Чернозем обыкновенный. Прямой посев, Ставропольский край. Опыт, две ротации. Ставрополь: Сервисшкола, 2024. 356 с.
- Казеев К.Ш., Мокриков Г.В., Акименко Ю.В., Мясникова М.А., Колесников С.И. Экологическая оценка применения технологии No-Till в Ростовской области. Ростов-на-Дону: Таганрог: Изд-во ЮФУ, 2018. 332 с.
- Овсинский И.Е. Новая система земледелия. М., 1911. 288 с.
- Пустовойтов Н.Д. Сезонно-мерзлотные почвы и их мелиорация. М.: Наука, 1971. 231 с.
- Рахимова Ю.М., Дозоров А.В., Подсевалов М.И., Наумов А.Ю. Влияние различных приёмов основной обработки и применения гербицидов в посевах сои на агрофизические показатели плодородия почвы // Вестник Ульяновской гос. с./х. академии. 2013. № 4. С. 6–13.
- Турин Е.Н. Преимущества и недостатки системы земледелия прямого посева в мире (обзор) // Таврический вестник аграрной науки. 2020 № 2. С. 150–168.
- Федюнин С.А., Васильев И.В., Сапрыкин Н.П. Перспективные технологии возделывания сои в условиях Оренбуржья // Известия Оренбургского гос. аграрного ун-та. 2017. № 2. С. 27–29.
- Ямковой В.А. Соя – фирменная культура Амурской области // Вопросы географии Верхнего Приамурья. 2019. № 6. С. 101–119.
- Abdalla K., Chivenge P., Ciais P., Chaplot V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis // Biogeosciences. 2016. V. 13. P. 3619–3633. https://doi.org/10.5194/bg-13-3619-2016
- Bokova A.I., Panina K.S., Dridiger V.K., Gadzhiumarov R.G., Kuznetsova N.A., Potapov M.B. Soil-dwelling springtails as indicators of the efficiency of No-till technologies with different amounts of mineral fertilizers in the crop rotation on chernozem soils // Soil Till. Res. 2023. V. 232. P. 105760. https://doi.org/10.1016/j.still.2023.105760
- Breil N.L., Lamaze T., Bustillo V., Marcato-Romain C., Coudert B., Queguiner S., Jarosz-Pelle N. Combined impact of no-tillage and cover crops on soil carbon stocks and fluxes in maize crops // Soil Till. Res. 2023. V. 233. P. 105782. https://doi.org/10.1016/j.still.2023.105782
- Buragiene S., Sarauskis E., Romaneckas K., Adamaviciene A., Kriauciuniene Z., Avizienyte D., Marozas V., Naujokiene V. Relationship between CO2 emissions and soil properties of differently tilled soils // Sci. Total Environm. 2019. V. 662. P. 786–795. https://doi.org/10.1016/j.scitotenv.2019.01.236
- Chataut G., Bhatta B., Joshi D., Subedi K., Kafle K. Greenhouse gases emission from agricultural soil: a review // J. Agric. Food Res. 2023. V. 11. P. 100533. https://doi.org/10.1016/j.jafr.2023.100533
- Chen Z., Leffler A.J. Soil basal respiration and nitrogen mineralization from C3 and C4 grass dominated plant communities respond differently to temperature and soil water variation // J. Arid Env. 2024. V. 224. P. 105235. https://doi.org/10.1016/j.jaridenv.2024.105235
- Gelybo G., Barcza Z., Dencso M., Potyo I., Kasa I., Horel A., Pokovai K. et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate // Soil Till. Res. 2022. V. 216. P. 105239. https://doi.org/10.1016/j.still.2021.105239
- Graham M.W., Thomas R.Q., Lombardozzi D.L., O’Rourke M.E. Modest capacity of no-till farming to offset emissions over 21st century // Environ. Res. Lett. 2021. V. 16. P. 054055. https://doi.org/10.1088/1748-9326/abe6c6
- Ivanov A.V., Zamolodchikov D.G., Salo M.A., Kondratova A.V., Piletskaya O.A., Bryanin S.V. Soil respiration in forest ecosystems in the south of the far east // Eurasian Soil Sc. 2023. V. 56. № 9. P. 1201–1209. https://doi.org/10.1134/S1064229323601142
- Kassam A., Friedrich T., Derpsch R. Successful experiences and lessons from conservation agriculture worldwide // Agronomy. 2022. V. 12. № 769. P. 1–19. https://doi.org/10.3390/agronomy12040769
- Kurganova I.N., Lopes de Gerenyu V.O., Myakshina T.N., Sapronov D.V., Zhmurin V.A., Kudeyarov V.N., Romashkin I.V. Experimental and model estimates of respiration of the forest sod-podzolic soil in the Prioksko-Terrasny nature reserve // Contemporary Problems of Ecology. 2020. V. 13. P. 813–824. https://doi.org/10.1134/S1995425520070057
- Kudeyarov V.N. Soil respiration and carbon sequestration: a review // Eurasian Soil Sc. 2023. V. 56. P. 1191–1200. https://doi.org/10.1134/S1064229323990012
- Mondal S., Chakraborty D., Paul R.K., Mondal A., Ladha J.K. No-till is more of sustaining the soil than a climate change mitigation option // Agriculture, Ecosyst. Env. 2023. V. 352. P. 108498. https://doi.org/10.1016/j.agee.2023.108498
- Potapov P., Turubanova S., Hansen M.C. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century // Nat Food. 2022. V. 3. P. 19–28. https://doi.org/10.1038/s43016-021-00429-z
Supplementary files
