Features of Formation in Aqueous Solutions and Physicochemical Properties of the Ti–Co–Ni Dispersed System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the methods of X-ray phase analysis, scanning electron microscopy, and Auger spectroscopy, the features of the joint precipitation of elemental cobalt and nickel on the surface of titanium of various dispersions from aqueous solutions are studied. It has been established that, in the process of deposition on titanium microparticles, intermetallic compounds are formed, the phase composition of which depends on the prehistory and particle size of the initial titanium powder: the CoNi intermetallic compound is formed mainly on the surface of particles of dispersed titanium of PTM grade, while Co3Ni is mainly formed on the surface of particles of dispersed titanium grade PTK-1. It is shown that the specific surface area, total volume, and average pore diameter of the formed Ti–CoNi and Ti–Co3Ni systems surpass similar indicators of the initial samples of PTM-1 and PTK-1dispersed titanium.

About the authors

A. F. Dresvyannikov

Kazan National Research Technological University, 420015, Kazan, Russia

Email: a.dresvyannikov@mail.ru
Россия, 420015, Казань, ул. Карла Маркса, 68

L. E. Kalugin

Kazan National Research Technological University, 420015, Kazan, Russia

Author for correspondence.
Email: a.dresvyannikov@mail.ru
Россия, 420015, Казань, ул. Карла Маркса, 68

References

  1. Artyukhova N.V., Yasenchuk Yu.F., Gyunter V.E. // Russian J. Non-Ferrous Metals. 2013. V. 54. № 2. P. 178–185.
  2. Saburi T. Ti–Ni Shape Memory Alloys. Shape Memory Materials / Saburi T., Otsuka K., C. M. Wayman // Cambridge University Press, 1998. 284 p.
  3. Alves A.C., Wenger F., Ponthiaux P., Celis J.-P., Pinto A.M., Rocha L.A., Fernandes J.C.S. // Electrochim. Acta. 2017. V. 234. P. 16–27. https://doi.org/10.1016/j.electacta.2017.03.011
  4. Dresvyannikov A.F., Akhmetova A.N., Denisov A.E. // Protection of Metals and Physical Chemistry of Surfaces. 2021. V. 57. № 6. P. 1165–1171.
  5. Dresvyannikov A.F., Ivshin Y.V., Chong P.T., Khairullina A.I. // Protection of Metals and Physical Chemistry of Surfaces. 2022. V. 58. № 1. P. 90–98.
  6. Сухотин А.М. Справочник по электрохимии. Л.: Химия, 1981. 488 с.
  7. Wilhelmsen W., Grande A.P. // Electrochim. Acta. 1987. V. 32. № 10. P. 1469–1474. https://doi.org/10.1016/0013-4686(87)85088-0
  8. Munirathinam B., Narayanan R., Neelakantan L. // Thin Solid Films. 2016. V. 598. P. 260–270. https://doi.org/10.1016/j.tsf.2015.12.025
  9. Baehre D., Ernst A., Weibhaar K., Natter H., Stolpe M., Busch R. // Procedia CIRP. 2016. V. 42. P. 137–142. https://doi.org/10.1016/j.procir.2016.02.208
  10. Hu P., Song R., Li X.-J., Deng J., Chen Z.-Y., Li Q.-W., Wang K.-S., Cao W.-C., Liu D.-X., YuH.-L. // J. Alloys Compd. 2017. V. 708. P. 367–372. https://doi.org/10.1016/j.jallcom.2017.03.025
  11. Garfias-Mesias L.F., Alodan M., James P.I., Smyri W.H. // J. Electrochem. Soc. 1998. V. 145. № 6. P. 2005–2010. https://doi.org/10.1149/1.1838590
  12. Huo S., Meng X. // Corros. Sci. 1990. V. 31. P. 281–286. https://doi.org/10.1016/0010-938X(90)90120-T
  13. Дикусар А.И., Давыдов А.Д., Молин А.Н., Энгельгардт Г.Р. // Электрохимия. 1987. Т. 23. С. 963–967.
  14. Tsay P, Hu C. // J. Electrochem Soc. 2002. V. 149. P. 492–497.
  15. Vazquez-Arenas J., Pritzker M. // Electrochimica Acta. 2012. V. 66. P. 139–150.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (48KB)
4.

Download (58KB)
5.

Download (134KB)
6.

Download (687KB)
7.

Download (225KB)

Copyright (c) 2023 А.Ф. Дресвянников, Л.Е. Калугин