Physicochemical Features of Biocorrosion of Copper and Products Based on It by Microfungi

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Corrosion resistance of structural materials has become one of the most important aspects in the electronics industry. In particular, biodeterioration and biocorrosion lead to operational failures and high economic losses. Biocorrosion of copper and base materials applied for the production of printed circuit boards is studied in this work. The inevitable change in the properties and destruction of textolite and glass textolite that are used in the composition of radioelectronic components and are in contact with copper often results in violations of the performance of devices and equipment. An attempt to explain the role of biofilms of microfungi as the main factor of mycological corrosion of copper in the composition of some electronic-industry products is made in this work.

About the authors

D. V. Belov

Federal Research Center “Institute of Applied Physics”, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: belov.denbel2013@yandex.ru
Россия, 603950, Нижний Новгород,, ул. Ульянова, 46

S. N. Belyaev

Federal Research Center “Institute of Applied Physics”, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: belov.denbel2013@yandex.ru
Россия, 603950, Нижний Новгород,, ул. Ульянова, 46

P. A. Yunin

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Author for correspondence.
Email: belov.denbel2013@yandex.ru
Россия, 603950, Нижний Новгород

References

  1. http://data.europa.eu/eli/reg_impl/2016/1089/oj.
  2. Белов Д.В., Беляев С.Н., Геворгян Г.А., Максимов М.В. // Журн. физической химии. 2022. Т. 96. № 8. С. 1075. https://doi.org/10.31857/S0044453722080052 Belov D.V., Belyaev S.N., Gevorgyan G.A., Maksimov M.V. // Russian J. Physical Chemistry A. 2022. V. 96. № 8. P. 1599. 10.31857/S0044453722080052
  3. Белов Д.В., Беляев С.Н. // Конденсированные среды и межфазные границы. 2022. Т. 24. № 2. С. 155. https://doi.org/10.17308/kcmf.2022.24/9256 Belov D.V., Belyaev S.N. // Inorganic Materials: Applied Research. 2022. V. 13. № 6. P. 1640. 10.17308/kcmf.2022.24/9256
  4. Li X.L., Narenkumar J., Rajasekar A., Ting Y.-P. // 3 Biotech. 2018. V. 8. № 3. P. 178. https://doi.org/10.1007/s13205-018-1196-0
  5. Vargas I., Fischer D., Alsina M., Pavissich J., Pastén P., Pizarro G. // Materials. 2017. V. 10. № 9. P. 1036. https://doi.org/10.3390/ma10091036
  6. Emelyanenko A.M., Pytskii I.S., Kaminsky V.V., Chulkova E.V. et al. // Colloids and Surfaces B: Biointerfaces. 2019. 110622. https://doi.org/10.1016/j.colsurfb.2019.110622
  7. Zhao J., Csetenyi L., Gadd G. // International Biodeterioration & Biodegradation. 2020. V. 154. 105081. https://doi.org/10.1016/j.ibiod.2020.105081
  8. Santos J.S., Marquez V., Buijnsters J.G., Praserthdam S., Praserthdam P. // Applied Surface Science. 2023. V. 607. 155072. https://doi.org/10.1016/j.apsusc.2022.155072
  9. Gharieb M.I., Ali M.I., El-Shoura A.A. // Biodegradation. 2004. V. 15. № 1. P. 49. https://doi.org/10.1023/B:BIOD.0000009962.48723.df
  10. Okorie I.E., Chukwudi N.R. // Zastita Materijala. 2021. V. 62. № 4. P. 333. https://doi.org/10.5937/zasmat2104333O
  11. Picioreanu C., Loosdrecht M.V. // J. Electrochemical Society. 2002. V. 149. № 6. B211‒B223. https://doi.org/10.1149/1.1470657
  12. Siqueira V.M., Lima N. // J. Mycology. 2013. 152941. https://doi.org/10.1155/2013/152941
  13. Rather M.A., Gupta K., Mandal M. // Brazilian J. Microbiology. 2021. V. 52. № 12. P. 1. https://doi.org/10.1007/s42770-021-00624-x
  14. Flemming H.-C., Wingender J. // Nature Reviews. Microbiology. 2010. V. 8. № 9. P. 623. https://doi.org/10.1038/nrmicro2415
  15. Lewandowski Z., Beyenal H. Mechanisms of Microbially Influenced Corrosion. Springer Series on Biofilms / Springer-Verlag Berlin Heidelberg. 2008. P. 35–64. https://doi.org/10.1007/978-3-540-69796-1_3
  16. Белов Д.В., Челнокова М.В., Калинина А.А., Соколова Т.Н., Смирнов В.Ф., Карташов В.Р. // Коррозия: материалы, защита. 2011. № 3. С. 19.
  17. Белов Д.В., Челнокова М.В., Соколова Т.Н., Смирнов В.Ф., Калинина А.А., Карташов В.Р. // Известия высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54. № 10. С. 133.
  18. Aubrey D.N.J. de Grey // DNA and Cell Biology. 2002. V. 21. № 4. P. 251. https://doi.org/10.1089/104454902753759672
  19. Bielski B.H.J., Allen A.O. // J. Physical Chemistry. 1977. V. 81. № 11. P. 1048. https://doi.org/10.1021/j100526a005
  20. Белов Д.В., Челнокова М.В., Соколова Т.Н., Смирнов В.Ф., Карташов В.Р. // Коррозия: материалы, защита. 2009. № 11. С. 43.
  21. Коваль Э.З., Сидоренко Л.П. Микодеструкторы промышленных материалов. Киев: Наукова думка, 1989. 192 с.
  22. Ринальди М., Саттон Д., Фотергилл А. Определитель патогенных и условно патогенных грибов. М.: Мир. 2001. 486 с.
  23. Aruchamy A., Fujishima A. // J. Electroanal. Chem. 1989. V. 272. № 1–2. P. 125.
  24. Di Quarto F., Piazza S., Sunseri C. // Electrochim. Acta. 1985. V. 30. № 3. P. 315.
  25. Strehblow H.-H., Maurice V., Marcus P. // Electrochim. Acta. 2001. V. 46. P. 3755.
  26. Modestov A.D., Zhou G.-D., Ge H.-H., Loo B.H. // J. Electroanal. Chem. 1995. V. 380. № 1–2. P. 63.
  27. Bogdanowicz R., Ryl J., Darowicki K., Kosmowski B.B. // J. Solid State Electrochem. 2009. https://doi.org/10.1007/s10008-008-0650-z
  28. Wilhelm S.M., Tanizawa Y., Chang-Yi Liu, Hackerman N. // Corr. Sci. 1982. V. 22. № 8. P. 791.
  29. Chaudhary Y.S., Argaval A., Shrivastav R., Satsangi V.R., Dass S. // Int. J. Hydrogen Energy. 2004. № 29. P. 131.
  30. Kublanovsky V.S., Kolbasov G.Ya., Belinskii V.N. // J. Electroanal. Chem. 1996. V. 415. P. 161.
  31. Kautek W., Gordon J.G. // J. Electrochem. Soc. 1990. V. 137. № 9. P. 2672.
  32. Shoesmith D.W., Rummery T.E., Owen D., Lee W. // J. Electrochem. Soc. 1976. V. 123. № 6. P. 790.
  33. Burke L.D., Ahern M.J.G., Ryan T.G. // J. Electrochem. Soc. 1990. V. 137. № 2. P. 553.
  34. Abd El Halem S.M., Ateya B.G. // J. Electroanal. Chem. 1981. V. 117. № 2. P. 309.
  35. Ambrose J., Barradas R.G., Shoesmith D.W. // J. Electroanal. Chem. 1973. V. 47. № 1. P. 65.
  36. Ives D.J.G., Rawson A.E. // J. Electrochemical Society. 1962. V. 109. № 6. P. 447. https://doi.org/10.1149/1.2425445
  37. Ives D.J.G., Rawson A.E. // J. Electrochemical Society. 1962. V. 109. № 6. P. 452. https://doi.org/10.1149/1.2425446
  38. Ives D.J.G., Rawson A.E. // J. Electrochemical Society. 1962. V. 109. № 6. P. 458. https://doi.org/10.1149/1.2425447
  39. Ives D.J.G., Rawson A.E. // J. Electrochemical Society. 1962. V. 109. № 6. P. 462. https://doi.org/10.1149/1.2425448
  40. Белов Д.В., Беляев С.Н., Максимов М.В., Геворгян Г.А. // Вопросы материаловедения. 2021. Т. 3. № 107. С. 163. https://doi.org/10.22349/1994-6716-2021-107-3-163-183
  41. Ni Y.J., Cheng Y.Q., Xu M.Y., Qiu C.G. et al. // Huan jing ke xue= Huanjing kexue. 2019. V. 40. № 1. P. 293. https://doi.org/10.13227/j.hjkx.201803215
  42. Liu A., Liu J., Han J., Zhang W. // Journal of Hazardous Materials. 2017. V. 322. P. 129. https://doi.org/10.1016/j.jhazmat.2015.12.070
  43. Ribeiro J.P., Nunes M.I. // Environmental Research. 2021. V. 197. 110957. https://doi.org/10.1016/j.envres.2021.110957
  44. Zhou P., Zhang J., Zhang Y., Liang J., Liu Y., Liu B., Zhang W. // J. Molecular Catalysis A: Chemical. 2016. V. 424. P. 115. https://doi.org/10.1016/j.molcata.2016.08.022
  45. Cheng M., Zeng G., Huang D., Lai C., Xu P., Zhang C., Liu Y. // Chemical Engineering Journal. 2016. V. 284. P. 582. https://doi.org/10.1016/j.cej.2015.09.001
  46. Li B., Fan Y., Li C., Zhao X., Liu K., Lin Y. // Electroanalysis. 2018. V. 30. P. 1. https://doi.org/10.1002/elan.201700574
  47. Ensafi A.A., Abarghoui M.M., Rezaei B. // Electrochimica Acta. 2014. V. 123. P. 219. https://doi.org/10.1016/j.electacta.2014.01.031
  48. Elwell C.E., Gagnon N.L., Neisen B.D., Dhar D., Spaeth A.D., Yee G.M., Tolman W.B. // Chemical Reviews. 2017. V. 117. № 3. P. 2059. https://doi.org/10.1021/acs.chemrev.6b00636
  49. Itoh S. // Accounts of Chemical Research. 2015. V. 48. № 7. P. 2066. https://doi.org/10.1021/acs.accounts.5b00140
  50. Bailey W.D., Dhar D., Cramblitt A.C., Tolman W.B. // J. American Chemical Society. 2019. V. 141. № 13. P. 5470. https://doi.org/10.1021/jacs.9b00466

Supplementary files


Copyright (c) 2023 Д.В. Белов, С.Н. Беляев, П.А. Юнин