Heating of Particles with an Aluminum Core and a Hydroxide Shell

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Particles with an aluminum core and a hydroxide shell obtained by low-temperature (up to 100°C) oxidation of spherical aluminum micron particles with water are studied. Processes occurring upon heating these particles up to 750°C in a controlled gaseous atmosphere are analyzed. The composition and amount of released gas-phase products are studied, and their nature is determined. The transformation of the shell as a result of the phase transition of aluminum hydroxide to oxide is considered. The mechanism of formation of cracks as a result of thermal expansion of the core and shell during the heating of the particle is considered. Outcrops of aluminum onto the surface of the oxide shell after reaching the melting point of aluminum are noted. It is proposed to use aluminum extruded onto the surface for the formation of bonds between the particles upon executing 3D printing.

Sobre autores

N. Shaitura

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russia

Email: tesh-s@yandex.ru
Россия, 119991, Москва, ул. Косыгина, 4

V. Artemov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences, 119991, Moscow, Russia

Email: tesh-s@yandex.ru
Россия, 119991, Москва, ул. Косыгина, 4; Россия, 119991, Москва, Ленинский пр., 38

M. Larichev

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russia

Autor responsável pela correspondência
Email: tesh-s@yandex.ru
Россия, 119991, Москва, ул. Косыгина, 4

Bibliografia

  1. Fernandez A., Sanchez-Lopez J.C., Caballero A. et al. // J. Microscopy. 1998. V. 191. P. 212.
  2. Жорин В.А., Киселев М.Р., Ширяев А.А., Котенев В.А. // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 1. С. 45.
  3. Larichev M.N., Shaitura N.S., Artemov V.V. // Письма в журн. технической физики. 2021. Т. 47. № 8. С. 11.
  4. Eisenreich N., Fietzek H., Juer-Lorenzo M. et al. // Propellants, Explosives, Pyrotechnics. 2004. V. 29. № 3. P. 137.
  5. Ambaryan G.N., Vlaskin M.S., Shkolnikov E.I., Zhuk A.Z. // J. Physics: Conference Series. 2020. P. 012030.
  6. Laritchev M.N., Jigach A.N., Leipunsky I.O., Kuskov M.L. // NanoTech 2002: At the Edge of Revolution. 2002.
  7. Шайтура Н.С., Ларичева О.О., Ларичев М.Н. // Химическая физика. 2019. Т. 38. № 3. С. 9.
  8. Тихов С.Ф., Фенелонов В.Б., Садыков В.А. и др. // Кинетика и катализ. 2000. Т. 41. № 6. С. 907.
  9. Nalivaiko A.Yu., Ozherelkov D.Yu., Arnautov A.N. et al. // Applied Physics A. 2020. V. 126. P. 871.
  10. Larichev M.N. Metal Nanopowders: Production, Characterization, and Energetic Applications / Wiley CH Verlag GmbH & Co. KGaA, 2014. P. 163.
  11. Shaytura N.S., Laritchev M.N., Laritcheva O.O., Shkol’nikov E.I. // Current Applied Physics. 2010. V. 10. P. 66.
  12. Popenko E.M., Il’in A.P., Gromov A.M. et al. // Combustion, Explosion, and Shock waves. 2002. V. 38. P. 157.
  13. Томило В.А., Паршуто А.А., Чекан Н.М. // Известия национальной академии наук Белоруссии. Серия физико-технических наук. 2015. № 1. С. 22.
  14. White G.K., Roberts R.B. // High Temperatures-High Pressures. 1983. V. 15. № 3. P. 321.
  15. http://www.virial.ru/materials/95/.
  16. https://fityk.nieto.pl/.
  17. Tiryakioglu M. // Intl. J. Cast. Metals. Res. 2020. V. 32. P. 315.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (154KB)
4.

Baixar (310KB)
5.

Baixar (63KB)
6.

Baixar (67KB)
7.

Baixar (89KB)
8.

Baixar (1MB)

Declaração de direitos autorais © Н.С. Шайтура, В.В. Артемов, М.Н. Ларичев, 2023