Метноds for the extraction of organic compounds from solid samples. 1. Liquid extraction. Review of reviews

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first part of the review provides general information about the liquid extraction of organic compounds from solid samples and discusses various methods of its implementation: extraction in a Soxlet apparatus, ultrasonic extraction, extraction in a microwave field. Based on the analysis of the review papers, information on the features of sample preparation using these methods is systematized, experimental parameters affecting the extraction efficiency are considered, examples of the use of these methods for the isolation of organic compounds in the analysis of solid environmental objects, food and plants are given.

Full Text

Restricted Access

About the authors

S. G. Dmitrienko

Lomonosov Moscow State Universify, Department of Chemistry

Email: nikatolm@mail.ru
Russian Federation, Moscow

V. V. Apyari

Lomonosov Moscow State Universify, Department of Chemistry

Email: nikatolm@mail.ru
Russian Federation, Moscow

V. V. Tolmacheva

Lomonosov Moscow State Universify, Department of Chemistry

Author for correspondence.
Email: nikatolm@mail.ru
Russian Federation, Moscow

М. V. Gorbunova

Lomonosov Moscow State Universify, Department of Chemistry

Email: nikatolm@mail.ru
Russian Federation, Moscow

А. А. Furletov

Lomonosov Moscow State Universify, Department of Chemistry

Email: nikatolm@mail.ru
Russian Federation, Moscow

Yu. А. Zolotov

Lomonosov Moscow State Universify, Department of Chemistry; N.S. Kurnakov lnstitute of General and lnorganic Chemistry of the Russion Аcademy оf Sciences

Email: nikatolm@mail.ru
Russian Federation, Мoscow; Мoscow

References

  1. Picó Y. Chromatography-mass spectrometry: Recent evolution and current trends in environmental science // Curr. Opin. Environ. Sci. Health. 2020. V. 18. P. 47 https://doi.org/10.1016/j.coesh.2020.07.002
  2. Lopez-Ruiz R., Romero-Gonzalez R., Frenich A.G. Ultrahigh-pressure liquid chromatography-mass spectrometry: an overview of the last decade // Trends Anal. Chem. 2019. V. 118. P. 170.
  3. Rathod R.H., Chaudhari S.R., Patil A.S., Shirkhedkar A.A. Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: analysis of drugs and pharmaceutical formulations // Futur. J. Pharm. Sci. 2019. V. 5. P. 2. https://doi.org/10.1186/s43094-019-0007-8
  4. Kanu A.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review // J. Chromatogr. A. 2021. V. 1654. Article 462444.
  5. Gu Y., Peach J.T., Warth B. Sample preparation strategies for mass spectrometry analysis in human exposome research: Current status and future perspectives // Trends Anal. Chem. 2023. V. 166. Article 117151. https://doi.org/10.1016j.trac.2023.117151
  6. Chen Y., Guo Z., Wang X., Qiu C. Sample preparation // J. Chromatogr. A. 2008. V. 1184. P. 191. doi: 10.1016/j.chroma.2007.10.026
  7. Câmara J.S., Perestrelo R., Berenguer C.V., Andrade C.F. P., Gomes T.M., Olayanju B., et al. Green extraction techniques as advanced sample preparation approaches in biological, food, and environmental matrices: A review // Molecules. 2022. V. 27. Article 2953. https://doi.org/10.3390/molecules27092953
  8. Picot-Allain C., Mahomoodally M. F., Ak G., Zengin G. Conventional versus green extraction techniques — a comparative perspective // Curr. Opin. Food Sci. 2021. V. 40. P. 144. https://doi.org/10.1016/j.cofs.2021.02.009
  9. Kailasa S.K., Koduru J.R., Park T.J., Singhal R.K., Wu H.-F. Applications of single-drop microextraction in analytical chemistry: A review // Trends Environ. Anal. Chem. 2021. V. 29. Article e00113.
  10. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкостная экстракция органических соединений в каплю экстрагента. Обзор обзоров // Журн. аналит. химии. 2021. Т. 76. С. 675. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. Liquid–liquid extraction of organic compounds into a single drop of the extractant: Overview of reviews // J. Anal. Chem. 2021. V. 76. P. 907.)
  11. Gjelstad A. Three-phase hollow fiber liquid-phase microextraction and parallel artificial liquid membrane extraction // Trends Anal. Chem. 2019. V. 113. P. 25.
  12. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Дисперсионная жидкостно-жидкостная микроэкстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2020. Т. 75. № 10. С. 867. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. Dispersive liquid–liquid microextraction of organic compounds: An overview of reviews // J. Anal. Chem. 2020. V. 75. № 10. P. 1237.)
  13. Sajid M. Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects // Trends Anal. Chem. 2022. V. 152. Article 116636
  14. Дмитриенко С.Г., Апяри В.В., Горбунова М.В., Толмачева В.В., Золотов Ю.А. Гомогенная жидкостная микроэкстракция органических соединений // Журн. аналит. химии. 2020. Т. 75. С. 963. (Dmitrienko S.G., Apyari V.V., Gorbunova M.V., Tolmacheva V.V., Zolotov Yu. A. Homogeneous liquid–liquid microextraction of organic compounds // J. Anal. Chem. 2020. V. 75. № 11. P. 1371.)
  15. Ramezani A.M., Ahmadi R., Yamini Y. Homogeneous liquid-liquid microextraction based on deep eutectic solvents // Trends Anal. Chem. 2022. V. 149. Article 116566.
  16. Turoňová D., Kujovská Krčmová L., Švec F. Application of microextraction in pipette tips in clinical and forensic toxicology // Trends Anal. Chem. 2021. V. 143. Article 116404.
  17. Carasek E., Mores L., Huelsmann R.D. Disposable pipette extraction: A critical review of concepts, applications, and directions // Anal. Chim. Acta. 2022. V. 1192. Article 339383.
  18. Jalili V., Barkhordari A., Ghiasvand A. A comprehensive look at solid-phase microextraction technique: A review of reviews // Microchem. J. 2020. V. 152. Article 104319.
  19. Nolvachai Y., Amaral M.S. S., Herron R., Marriott P.J. Solid phase microextraction for quantitative analysis – Expectations beyond design? // Green Anal. Chem. 2023. V. 4. Article 100048.
  20. David F., Ochiai N., Sandra P. Two decades of stir bar sorptive extraction: A retrospective and future outlook // Trends Anal. Chem. 2019. V. 112. P. 102.
  21. Hasan C.K., Ghiasvand A, Lewis T.W., Nesterenko P.N., Paull B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications // Anal. Chim. Acta. 2020. V. 1139. P. 222.
  22. Yang L., Said R., Abdel-Rehim M. Sorbent, device, matrix and application in microextraction by packed sorbent (MEPS): A review // J. Chromatogr. B. 2017. V. 1043. P. 33.
  23. Pereira J.A. M., Gonçalves J., Porto-Figueira P., Figueira J.A., Alves V., Perestrelo R., Medina S., Câmara J.S. Current trends on microextraction by packed sorbent – Fundamentals, application fields, innovative improvements and future applications // Analyst. 2019. V. 144. P. 5048.
  24. Capriotti A.L., Cavaliere C., La Barbera G., Montone C.M., Piovesana S., Laganà A. Recent applications of magnetic solid-phase extraction for sample preparation // Chromatographia. 2019. V. 82. P. 1251.
  25. Ghorbani M., Aghamohammadhassan M., Chamsaz M., Akhlaghi H., Pedramrad T. Dispersive solid phase microextraction // Trends Anal. Chem. 2019. V. 118. P. 793.
  26. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В., Фурлетов А.А. Дисперсионная и магнитная твердофазная экстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2024. Т. 79. № 2. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V., Furletov A.A. Dispersive and magnetic solid-phase extraction of organic compounds: Review of reviews // J. Anal. Chem. 2024. V. 79. № 2. P. 105–118. https://doi.org/10.1134/S1061934824020060)
  27. Zuloaga O., Navarro P., Bizkarguenaga E., Iparraguirre A., Vallejo A., Olivares M., Prieto A. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review // Anal. Chim. Acta. 2012. V. 736. P. 7. https://doi.org/10.1016/j.aca.2012.05.016
  28. Tadeo J., Sánchez-Brunete C., Albero B., García-Valcárcel A., Pérez R. Analysis of emerging organic contaminants in environmental solid samples // Cent. Eur. J. Chem. 2012. V. 10. P. 480.
  29. Martín-Pozo L., de Alarcón-Gómez B., Rodríguez-Gómez R., García-Córcoles M.T., Çipa M., Zafra-Gómez A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review // Talanta. 2019. V. 192. P. 508. https://doi.org/10.1016/j.talanta.2018.09.056
  30. Grześkowiak T., Czarczyńska-Goślińska B., Zgoła-Grześ kowiak A. Current approaches in sample preparation for trace analysis of selected endocrine-disrupting compounds: Focus on polychlorinated biphenyls, alkylphenols, and parabens // Trends Anal. Chem. 2016. V. 75. P. 209. https://doi.org/10.1016/j.trac.2015.07.005
  31. Kim M., Li L.Y., Gorgy T., Grace J. R. Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis // Environ. Pollut. 2017. V. 220. P. 753. https://doi.org/10.1016/j.envpol.2016.10.053
  32. Salgueiro-González N., Castiglioni S., Zuccato E., Turnes-Carou I., López-Mahía P., Muniategui-Lorenzo S. Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: A critical review // Anal. Chim. Acta. 2018. V. 1024. P. 39. https://doi.org/10.1016/j.aca.2018.02
  33. Wang C., Wang Y., Herath H.M. S.K. Polycyclic aromatic hydrocarbons (PAHs) in biochar – Their formation, occurrence and analysis: A review // Org. Geochem. 2017. V. 114. P. 1. https://doi.org/10.1016/j.orggeochem.2017.09
  34. Pérez-Lemus N., López-Serna R., Pérez-Elvira S.I., Barrado E. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review // Anal. Chim. Acta. 2019. V. 1083. P. 19. https://doi.org/10.1016/j.aca.2019.06.044
  35. Ling W., Rui S., Yongxin L., Sun C. Sample preparation and analytical methods for polycyclic aromatic hydrocarbons in sediment // Trends Environ. Anal. Chem. 2019. Article e00074. https://doi.org/10.1016/j.teac.2019
  36. Galmiche M., Delhomme O., François Y.-N., Millet M. Environmental analysis of polar and non-polar polycyclic aromatic compounds in airborne particulate matter, settled dust and soot: Part I: Sampling and sample preparation // Trends Anal. Chem. 2021. V. 134. Article 116099. https://doi.org/10.1016/j.trac.2020.116099
  37. Song N., Tian Y., Luo Z., Dai J., Liu Y., Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil // RSC Adv. 2022. V. 12. P. 6099. https://doi.org/10.1039/D1RA08633B
  38. Chen X., Wu X., Luan T., Jiang R., Ouyang G. Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review // J. Chromatogr. A. 2021. V. 1640. Article 461961. https://doi.org/10.1016/j.chroma.2021.461961
  39. Hidalgo-Serrano M., Borrull F., Marc´e R.M., Pocurull E. Phthalate esters in marine ecosystems: Analytical methods, occurrence and distribution // Trends Anal. Chem. 2022. V. 151. Article 116598. https://doi.org/10.1016/j.trac.2022.116598
  40. Brinco J., Guedes P., Gomes da Silva M., Mateus E.P., Ribeiro A.B. Analysis of pesticide residues in soil: A review and comparison of methodologies // Microchem. J. 2023. V. 195. Article 109465. https://doi.org/10.1016/j.microc.2023
  41. Lambropoulou D.A., Albanis T.A. Methods of sample preparation for determination of pesticide residues in food matrices by chromatography-mass spectrometry-based techniques: A review // Anal. Bioanal. Chem. 2007. V. 389. P. 1663. https://doi.org/10.1007/s00216-007-1348-2
  42. Saini R.K., Keum Y.-S. Carotenoid extraction methods: A review of recent developments // Food Chem. 2018. V. 240. P. 90. https://doi.org/10.1016/j.foodchem.2017.07.099
  43. Madej K., Kalenik T.K., Piekoszewski W. Sample preparation and determination of pesticides in fat-containing foods // Food Chem. 2018. V. 269. P. 527. https://doi.org/10.1016/j.foodchem.2018.07.007
  44. Hewavitharana G.G., Perera D.N., Navaratne S.B., Wickramasinghe I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review // Arab. J. Chem. 2020. V. 13. P. 6865. https://doi.org/10.1016/j.arabjc.2020.06.039
  45. Watanabe E. Review of sample preparation methods for chromatographic analysis of neonicotinoids in agricultural and environmental matrices: From classical to state-of-the-art methods // J. Chromatogr. A. 2021. V. 1643. Article 462042. https://doi.org/10.1016/j.chroma.2021.462042
  46. Castro Ó., Borrull F., Pocurull E. High production volume chemicals in seafood: A review of analytical methods, occurrence and population risk // Trends Anal. Chem. 2022. V. 157. Article 116743 https://doi.org/10.1016/j.trac.2022.116743
  47. Mandal S., Poi R., Hazra D.K., Ansary I., Bhattacharyyaa S., Karmakar R. Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations // J. Chromatogr. B. 2023. V. 1215. Article 123587.
  48. Lefebvre T., Destandau E., Lesellier E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A Review // J. Chromatogr. A. 2020. Article 461770. https://doi.org/10.1016/j.chroma.2020.461770
  49. Mir-Cerda A., Núñez O., Granados M., Sentellas S., Saurina J. An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy // Trends Anal. Chem. 2023. V. 161. Article 116994
  50. Parrilla Vázquez P., Ferrer C., Martínez Bueno M.J., Fernández-Alba A.R. Pesticide residues in spices and herbs: sample preparation methods and determination by chromatographic techniques // Trends Anal. Chem. 2019. V. 115. P. 13. https://doi.org/10.1016/j.trac.2019.03.022
  51. Hamed M., Abdallah I.A., Bedair A., Mansour F.R. Sample preparation methods for determination of quercetin and quercetin glycosides in diverse matrices // Microchem. J. 2023. V. 194. Article 109233.
  52. Бессонова Е.А., Карпицкий Д.А., Карцова Л.А. Современные подходы к извлечению и концентрированию биологически активных веществ из растительных объектов с применением методов микроэкстракции для их хромато-масс-спектрометрического определения // Журн. аналит. химии. 2023. Т. 78. С. 883.
  53. Bitwell C., Indra S.S., Luke C., Kakoma M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants // Scientific African. 2023. V. 19. Article e01585
  54. Milevskaya V.V., Prasad S., Temerdashev Z.A. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review // Microchem. J. 2019. V. 145. P. 1036.
  55. Cabaleiro N., de la Calle I., Bendicho C., Lavilla I. Current trends in liquid–liquid and solid–liquid extraction for cosmetic analysis: A review // Anal. Methods. 2013. V. 5. P. 323. https://doi.org/10.1039/c2ay25830g
  56. Piao C., Chen L., Wang Y. A review of the extraction and chromatographic determination methods for the analysis of parabens // J. Chromatogr. B. 2014. V. 969. P. 139. https://doi.org/10.1016/j.jchromb.2014.08.015
  57. Abedi G., Talebpour Z., Jamechenarboo F. The survey of analytical methods for sample preparation and analysis of fragrances in cosmetics and personal care products // Trends Anal. Chem. 2018. V. 102. P. 41. https://doi.org/10.1016/j.trac.2018.01.006
  58. Celeiro M., Garcia-Jares C., Llompart M., Lores M. Recent advances in sample preparation for cosmetics and personal care products analysis // Molecules. 2021. V. 26. P. 4900. https://doi.org/10.3390/molecules26164900
  59. Chanioti S., Liadakis, G., Tzia C. Solid-liquid extraction / Food Engineering Handbook / Eds. Varzakas, T., Tzia, C. Boca Raton, FL, USA: CRC Press, 2014. P. 253.
  60. Naviglio D., Scarano P., Ciaravolo M., Gallo M. Rapid solid-liquid dynamic extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques // Foods. 2019. V. 8. P. 245. https://doi.org/10.3390/foods8070245
  61. Chemat F., Vian M.A., Ravi H.K., Khadhraoui B., Hilali S., Perino S., Tixier A.S. F. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects // Molecules. 2019. V. 24. P. 3007. https://doi.org/10.3390/molecules24163007
  62. Didion Y.P., Tjalsma T.G., Su Z., Malankowska M., Pinelo M. What is next? The greener future of solid liquid extraction of biobased compounds: Novel techniques and solvents overpower traditional ones // Sep. Purif. Technol. 2023. V. 320. Article 124147. https://doi.org/10.1016/j.seppur.2023.124147
  63. Kaoui S., Basaid K., Chebli B. Deep eutectic solvents as sustainable extraction media for plants and food samples: A review // Sustain. Chem. Pharm. 2023. V. 31. Article 100937. https://doi.org/10.1016/j.scp.2022.100937
  64. Vakh C., Koronkiewicz S. Surfactants application in sample preparation techniques: Insights, trends, and perspectives // Trends Anal. Chem. 2023. V. 165. Article 117143.
  65. Luque de Castro M.D., Garcı́a-Ayuso L. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future // Anal. Chim. Acta. 1998. V. 369. P. 1. https://doi.org/10.1016/s0003-2670(98)00233-5
  66. Luque-Garcı́a J.L., Luque de Castro M.D. Focused microwave-assisted Soxhlet extraction: Devices and applications // Talanta. 2004. V. 64. P. 571.
  67. Jensen W.B. The origin of the Soxhlet extractor // J. Chem. Educ. 2007. V. 84. P. 1913. https://doi.org/10.1021/ed084p1913
  68. De Castro M.L., Priego-Capote F. Soxhlet extraction: Past and present panacea // J. Chromatogr. A. 2010. V. 1217. P. 2383. https://doi.org/10.1016/j.chroma.2009.11.027
  69. Zygler A., Słomińska M., Namieśnik J. Soxhlet extraction and new developments such as soxtec // Compr. Sampl. Sample Prep. 2012. V. 2. P. 65. https://doi.org/10.1016/B978-0-12-381373-2.00037-5
  70. Luque-Garcı́a J., Luque de Castro M. Ultrasound: A powerful tool for leaching // Trends Anal. Chem. 2003. V. 22. P. 41. https://doi.org/10.1016/s0165-9936(03)00102-x
  71. Santos H., Capelo J. Trends in ultrasonic-based equipment for analytical sample treatment // Talanta. 2007. V. 73. P. 795. https://doi.org/10.1016/j.talanta.2007.05.039
  72. Tadeo J.L., Sánchez-Brunete C., Albero B., García-Valcárcel A.I. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples // J. Chromatogr. A. 2010. V. 1217. P. 2415. https://doi.org/10.1016/j.chroma.2009.11.066
  73. Bendicho C., De La Calle I., Pena F., Costas M., Cabaleiro N., Lavilla I. Ultrasound assisted pretreatment of solid samples in the context of green analytical chemistry // Trends Anal. Chem. 2012. V. 31. P. 50. https://doi.org/10.1016/j.trac.2011.06.018
  74. Seidi S., Yamini Y. Analytical sonochemistry; developments, applications, and hyphenations of ultrasound in sample preparation and analytical techniques // Cent. Eur. J. Chem. 2012. V. 10. P. 938. https://doi.org/10.2478/s11532-011-0160-1
  75. Picó Y. Ultrasound-assisted extraction for food and environmental samples // Trends Anal. Chem. 2013. V. 43. P. 84. https://doi.org/10.1016/j.trac.2012.12.005
  76. Tiwari B.K. Ultrasound: A clean, green extraction technology // Trends Anal. Chem. 2015. V. 71. P. 100.
  77. Albero B., Sánchez-Brunete C., García-Valcárcel A.I., Pérez R.A., Tadeo J.L. Ultrasound-assisted extraction of emerging contaminants from environmental samples // Trends Anal. Chem. 2015. V. 71. P. 110. https://doi.org/10.1016/j.trac.2015.03.015
  78. Chemat F., Rombaut N., Sicaire A.G., Meullemiestre A., Fabiano-Tixier A.S., Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review // Ultrason. Sonochem. 2017. V. 34. P. 540.
  79. Vinatoru M., Mason T.J., Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials // Trends Anal. Chem. 2017. V. 97. P. 159. https://doi.org/10.1016/j.trac.2017.09.002
  80. Albero B., Tadeo J.L., Pérez R.A. Ultrasound-assisted extraction of organic contaminants // Trends Anal. Chem. 2019. V. 118. P. 739. https://doi.org/10.1016/j.trac.2019.07.007
  81. Ojha S., Aznar R., O’Donnell C., Tiwari B. K. Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources // Trends Anal. Chem. 2019. 115663. https://doi.org/10.1016/j.trac.2019.115663
  82. Kumar K., Srivastav S., Sharanagat V. S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. // Ultrason. Sonochem. 2021. V. 70. Article 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
  83. Jinadasa B.K. K.K., Moreda-Piñeiro A., Fowler S.W. Ultrasound-assisted extraction in analytical applications for fish and aquatic living resources, A review // Food Rev. Int. 2021. V. 39. P. 1. https://doi.org/10.1080/87559129.2021.1967378
  84. Das P., Nayak P.K., Kesavan R. Ultrasound assisted extraction of food colorants: Principle, mechanism, extraction technique and applications: A review on recent progress // Food Chem. Adv. 2022. V. 1. Article 100144.
  85. Pérez R.A., Albero B. Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples // Trends Anal. Chem. 2023. V. 166. Article 117204. https://doi.org/10.1016/j.trac.2023.117204
  86. Shen L., Pang S., Zhong M., Sun Y., Qayum A., Liu Y., et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies // Ultrason. Sonochem. 2023. V. 101. Article 106646.
  87. Smith F.E., Arsenault E.A. Microwave-assisted sample preparation in analytical chemistry // Talanta. 1996. V. 43. P. 1207. https://doi.org/10.1016/0039-9140(96)01882-6
  88. Ganzler K., Salgó A., Valkó K. Microwave extraction. A novel sample preparation method for chromatography // J. Chromatogr. A. 1986. V. 371. P. 299. https://doi.org/10.1016/s0021-9673(01)94714-4
  89. Letellier M., Budzinski H. Microwave assisted extraction of organic compounds // Analusis. 1999. V. 27. P. 259. https://doi.org/10.1051/analusis:1999116
  90. Camel V. Microwave-assisted solvent extraction of environmental samples // Trends Anal. Chem. 2000. V. 19. P. 229. https://doi.org/10.1016/S0165-9936(99)00185-5
  91. Eskilsson C.S., Björklund E. Analytical-scale microwave-assisted extraction // J. Chromatogr. A. 2000. V. 902. P. 229. https://doi.org/10.1016/s0021-9673(00)00921-3
  92. Camel V. Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls // Analyst. 2001. V. 126. P. 1182. https://doi.org/10.1039/b008243k
  93. Кубракова И.В. Микроволновое излучение в аналитической химии: возможности и перспективы использования // Успехи химии. 2002. Т. 71. № 4. С. 327. https://doi.org/10.1070/RC2002v071n04ABEH000699 (Kubrakova I.V. Microwave radiation in analytical chemistry: The scope and prospects for application // Russ. Chem. Rev. 2002. V. 71. № 4. P. 283. https://doi.org/10.1070/RC2002v071n04ABEH000699)
  94. Luque-Garcia J.L., Luque de Castro M.D. Where is microwave-based analytical equipment for solid sample pretreatment going? // Trends Anal. Chem. 2003. V. 22. P. 90. https://doi.org/10.1016/S0165-9936(03)00202-4
  95. Srogi K. A review: Application of microwave techniques for environmental analytical chemistry // Anal. Lett. 2006. V. 39. P. 1261. https://doi.org/10.1080/00032710600666289
  96. Bélanger J.M.R., Paré J.R.J. Applications of microwave-assisted processes (MAP™) to environmental analysis // Anal. Bioanal. Chem. 2006. V. 386. P. 1049.
  97. Chen L., Song D., Tian Y., Ding L., Yu A., Zhang H. Application of on-line microwave sample-preparation techniques // Trends Anal. Chem. 2008. V. 27. P. 151. https://doi.org/10.1016/j.trac.2008.01.003
  98. Madej K. Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds // Trends Anal. Chem. 2009. V. 28. P. 436. https://doi.org/10.1016/j.trac.2009.02.002
  99. Sanchez-Prado L., Garcia-Jares C., Llompart M. Microwave-assisted extraction: Application to the determination of emerging pollutants in solid samples // J. Chromatogr. A. 2010. V. 1217. P. 2390. https://doi.org/10.1016/j.chroma.2009.11.080
  100. Chan C.H., Yusoff R., Ngoh G.C., Kung F.W. L. Microwave-assisted extractions of active ingredients from plants // J. Chromatogr. A. 2011. V. 1218. P. 6213. https://doi.org/10.1016/j.chroma.2011.07.040
  101. Tatke P., Jaiswal Y. An overview of microwave assisted extraction and its applications in herbal drug research // Res. J. Med. Plant. 2011. V. 5. P. 21.
  102. Sanchez-Prado L., Garcia-Jares C., Dagnac T., Llompart M. Microwave-assisted extraction of emerging pollutants in environmental and biological samples before chromatographic determination // Trends Anal. Chem. 2015. V. 71. P. 119. https://doi.org/10.1016/j.trac.2015.03.014
  103. Wang H., Ding J., Ren N. Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples // Trends Anal. Chem. 2016. V. 75. P. 197. https://doi.org/10.1016/j.trac.2015.05.005
  104. Mandal V., Tandey R. A critical analysis of publication trends from 2005–2015 in microwave assisted extraction of botanicals: How far we have come and the road ahead // Trends Anal. Chem. 2016. V. 82. P. 100. https://doi.org/10.1016/j.trac.2016.05.020
  105. Kala H.K., Mehta R., Sen K.K., Tandey R., Mandal V. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough // Trends Anal. Chem. 2016. V. 85. P. 140. https://doi.org/10.1016/j.trac.2016.09.007
  106. Llompart M., Celeiro M., Dagnac T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment // Trends Anal. Chem. 2019. V. 116. P. 136. https://doi.org/10.1016/j.trac.2019.04.029
  107. Bagade S.B., Patil M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review // Crit. Rev. Anal. Chem. 2021. V. 51. P. 138. https://doi.org/10.1080/10408347.2019.1686966
  108. López-Salazar H., Camacho-Díaz B.H., Ocampo M.L.A., Jiménez-Aparicio A.R. Microwave-assisted extraction of functional compounds from plants: A Review // BioResources. 2023. V. 18. P. 6614. https://doi.org/10.15376/biores.18.3
  109. Ferrara D., Beccaria M., Cordero C.E., Purcaro G. Microwave-assisted extraction in closed vessel in food analysis // J. Sep. Sci. 2023. V. 46. Article e2300390. https://doi.org/10.1002/jssc.202300390

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Схема проведения ультразвуковой экстракции из твердых образцов с использованием ультразвукового зонда (а) или ультразвуковой ванны (б) [80].

Download (123KB)
3. Рис. 2. Явление кавитации. (а) Развитие и коллапс кавитационных пузырьков. (б) Кавитационный коллапс на границе твердого тела и жидкости. Последовательность (1)–(3) показывает схему фрагментации или разрушения твердых частиц, что приводит к уменьшению их размера (увеличению площади поверхности) [73].

Download (138KB)
4. Рис. 3. (а) Принцип микроволновой экстракции в закрытых сосудах. (б) Коммерческий прибор для проведения микроволновой экстракции на 40 проб [106].

Download (123KB)
5. Рис. 4. Установка для проведения микроволновой экстракции в режиме онлайн с последующим определением [103].

Download (140KB)

Copyright (c) 2024 Russian Academy of Sciences