Systematization of the gas-chromatographic parameters of trimethylsilyl derivatives of amino acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The gas-chromatographic retention indices (RIs) of trimethylsilyl (TMS) derivatives of the simplest amino acids on standard nonpolar polydimethylsiloxane stationary phases were systematized. This processing of data included combining them for derivatives of the same amino acids depending on the number of TMS groups (from one to four) and calculating average RI values together with their standard deviations based on data from various sources of information. This form of presenting the results made it possible to identify the best characterized derivatives and evaluate the reliability of the retention indices known for them. The simplest additive scheme for calculating retention indices based on even limited data for the most common amino acids was formed to estimate their unknown values, control previously determined values, and identify erroneous data. The increment ΔRI = RI(bis) – RI(mono) for the transformation –CO2Si(CH3)3 + –NH2 → –CO2Si(CH3)3 + –NHSi(CH3)3 was well reproducible (118 ± 9). The other increments ΔRI = RI(tris) – RI(bis) were different for the transformations –NHSi(CH3)3 + XH → –N[Si(CH3)3]2 + XH (238 ± 35) and –NHSi(CH3)3 + XH → –NHSi(CH3)3 + + –XSi(CH3)3 (111 ± 16). A method for monitoring the correctness of the obtained values of ΔRI was proposed.

Full Text

Restricted Access

About the authors

I. G. Zenkevich

St. Petersburg State University, Institute for Chemistry

Author for correspondence.
Email: izenkevich@yandex.ru
Russian Federation, St. Petersburg

References

  1. Сунозова Е.В., Трубников В.И., Сакодынский К.И. Газовая хроматография ами но кислот. М.: Наука, 1976. 83 с.
  2. CRC Handbook of Chromatography. Amino Acids and Amines / Ed. Blackburn S. Boca Raton: Taylor & Francis Group, 1989. 424 p. https://doi.org/10.1201/9781003210337
  3. Molnar-Perl I. Quantitation of Amino Acids and Amines by Chromatography: Methods and Protocols. Amsterdam: Elsevier, 2005. 655 p. (J. Chromatogr. Series. V. 70).
  4. Engel M.H., Hare P.E. Gas-liquid chromatographic separation of amino acids and their derivatives / Chemistry and Biochemistry of the Amino Acids / Ed. Bar rett G.C. Dordrecht: Springer, 1985. Ch. 16. P. 462. https://doi.org/10.1007/978-94-009-4832-7_16
  5. Derivatization of analytes in chromato gra phy: General aspects / Encyclopedia of Chroma tography. 3rd Ed. / Ed. Cazes J. New York: Taylor & Francis, 2010. V. 1. P. 562.
  6. Amines, amino acids, amides and imides: Derivatization for GC analysis / Encyclo pe dia of Chroma tography. 3rd Ed. / Ed. Cazes J. New York: Taylor & Francis. 2010, V. 1. P. 50.
  7. Amino acids: HPLC analysis / Encyclo pe dia of Chroma tography. 3rd Ed. / Ed. Cazes J. New York: Taylor & Francis, 2010. V. 1. P. 67.
  8. Amino acids: HPLC analysis advanced techniques / Encyclo pe dia of Chroma togra phy. 3rd Ed. / Ed. Cazes J. New York: Taylor & Francis, 2010. V. 1. P. 73.
  9. Babu V.V.S., Vasanthakunar G.-R., Tantry S.J. N-Syli lation of amines and amino acids esters under neutral conditions employing TMS-Cl in the presence of zinc dust // Tetrahedron Lett. 2005. V. 46. P. 4099. https://doi.org/10.1016/j.tetlet.2005.04.007
  10. Зенкевич И.Г., Пушкарева Т.И. Хроматографическая и хромато-масс-спе ктро ме т рическая характеристика произ во д ных аминокислот, образующихся при их вза имодействии с диметилацеталем ди метилформамида // Журн. общ. химии. 2015. Т. 85. № 8. С. 1365. https://doi.org/10.1134/S107036325080204 (Zenkevich I.G., Pushkareva T.I. Chromatographic and chromato-mass-spectral characterization of amino acids derivatives formed vis the interaction with dimethylacetal of dimethylformamide // Russ. J. Gen. Chem. 2015. V. 85. № 8. P. 1918.)
  11. Fodor B., Csampai A., Molnar-Perl I. Hexamethyldisilazane and perfluorocarboxylic acid couples achieve trialkylsylilation and acylation of active proton containing orga nics in a single step // Microchem. J. 2020. V. 154. Article 104554. 7 p.
  12. The NIST Mass Spectral Library (NIST/EPA/NIH EI MS Library, 2017 Release). Soft ware/Data Ver si on; NIST Standard Reference Database, Number 69, August 2017. Na ti onal Insti tute of Standards and Techno logy, Gaithersburg, MD 20899: http://webbook.nist.gov (дата обращения: сентябрь 2023 г.).
  13. Bergstrom K., Gurtler J., Blomstrand R. Trimethylsylilation of amino acids: I. Study of glycine and lysine TMS derivatives with gas-liquid chromatography – mass spect ro metry // Anal. Biochem. 1970. V. 34. № 1. P. 74. https://doi.org/10.1016/0003-2697(70)90088-6
  14. Bergstrom K., Gurtler J. Trimethylsylilation of amino acids: II. Gas chromatographic and structural studies on TMS derivatives of straight chain amino acids // Acta Chem. Scand. 1971. V. 25. P. 175.
  15. Quero A., Jousse C., Lequart-Pillon M., Goutier E., Guillet X., Courtois B. et al. Improved stability of TMS derivatives for the robust quantification of plant polar metabolites by GC-MS // J. Chromatogr. B. 2014. V. 970. P. 36. https://doi.org/10,1016/j.ichromb.2014.08.040
  16. Engel B., Suralik P., Marchetti-Deschmann M. Critical consideration for trimethyl silyl derivatives of 24 primary metabolites measured by gas chromatography – tan dem mass spectrometry // SSC Plus. 2020. V. 3. № 9. P. 407. https://doi.org/10.1002/sscp.202000025
  17. Isidorov V.A., Bagan R., Szczepaniak L., Swiecicka I. Chemical profile and antimic ro bial activity of extractable compounds of Betula litwinowii (Betulaceae) buds // De Gruyter Open Chem. 2015. V. 13. P. 125. https://doi.org/10.1515/chem.-2015-0019.
  18. Isidorov V.A. GC-MS of Biologically and Environmentally Significant Organic Com po unds. TMS-Derivatives. Hoboken, USA: J. Wiley & Sons, 2020. 720 p.
  19. Lee B.Y., Yanamandra K., Thurmon T.F. Quantitative estimation of organic analytes with a capillary column // Amer. Clin. Lab. 2002. № 5. P. 30.
  20. Zenkevich I.G. Prevention of a dangerous tendency in the presentation of the results of GC-MS identi fication // Anal. Bioanal. Chem. 2013. V. 405. P. 3075. https://doi.org/10.1007/s00216-013-6751-2
  21. Benson S.W. III. Bond energies // J. Chem. Educ. 1965. V. 42. № 9. P. 502. https://doi.org/10.1021/ed042-p502
  22. Gajewski E., Dizdaroglu M., Simic M.G. Kovats indices of trimethylsilylated amino acids on fused-silica capillary columns // J. Chromatogr. 1982. V. 249. P. 41. https://doi.org/10.1016/S0021-9673(00)90231-9
  23. Kempa S., Hummel J., Schwemmer T., Pitzke M., Strehmel N., Wiankoop S. et al. An automatic GCxTOF-MS protocol for batch-wise extraction and alingment of mass isotopomer matrixes from differential 13C-labeling experiments // J. Basic Microbiol. 2009. V. 49. № 1. P. 82. https://doi.org/10.1002/jobm.200800337
  24. Choi H., Moon J.-K., Seo J.-S., Kim J.-H. Establishment of retention index library on gas chromatography – mass spectrometry for non-targeted metabolite profiling ap pro ach // J. Korean Soc. Appl. Biol. Chem. 2013. V. 56. P. 87. https://doi.org/10.1007/s13763-012-2376-y
  25. Bani Rashaid A.H., Jackson G.P., Harrington P. de B. Quantification of amino acids on human hair by trimethylsilyl derivatization gas chromatography / mass spectro me try // Enliven Archive (www.enlivenarchive.org). 2014. V. 1. № 1. 12 p.
  26. Rousseeuw P. J., Croux C. Alternatives to the median absolute devia ti on // J. Am. Stat. Assoc. 1993. V. 88. № 424. P. 1273. https://doi.org/10.1080/01621459.1993.10476408
  27. Howell D.C. Median absolute deviation / Wiley Stat. Ref: Statistic Reference Onli ne, 2014. https://doi.org/10.1002/9781118445112.stat06232
  28. Fitch C.A., Platzer G., Okon M., Gartcia-Moreno E.B., McIntosh L.P. Arginine: Its pKa value revisited: pKa value of arginine // Protein Sci. 2015. V. 24. № 5. P. 752. https://doi.org/10.1002/pro.2647
  29. Stein S.E., Babushok V.I., Brown R.L., Linstrom P.J. Estimation of Kovats retention indices using group con tributions // J. Chem. Inf. Model. 2007. V. 47. P. 975. https://doi.org/10.1021/ci600548y
  30. Zenkevich I.G., Todua N.G., Mikaia A.I. Unusual regularity in GC retention of sim p le amino acid derivatives // Current Chromatogr. 2019. V. 6. P. 1. doi: 10.2174/2213240606666/90709/100858
  31. Zenkevich I.G., Kuznetsova L.M. A new approach to the prediction of GC retention indices from physico-chemical constants // Collect. Czech. Chem. Commun. 1991. V. 56. № 10. P. 2042.
  32. Zenkevich I.G. Reciprocally unambiguous conformity between GC retention indices and boiling points within two- and multidimensional taxonomic groups of organic compounds // J. High Resolut. Chromatogr. Chromatogr. Commun. 1998. V. 21. № 10. P. 565.
  33. Dose E.V. Simulation of gas chromatographic retention and peak width using thermodynamic retention indices // Anal. Chem. 1087. V. 59. № 19. P. 2414. doi: 10.1021/ac00146a020
  34. Ciazynska-Halarewicz K., Kowalska T. Mathematical model of solute retention in gas chromatography as sources of thermodynamic data. Part I. Methyl-n-alkyl ketones as the test analytes // J. Chromatogr. Sci. 2002. V. 40. № 9. P. 421. https://doi.org/10.1093/chromsci/40.8.421
  35. Kowalska T., Heberger K., Gordenyi M. Temperature dependence of Kovats indices in gas chromatography. Explanation of empirical constants by use of transition-state theory // Acta Chromatogr. 2003. № 13. P. 60.
  36. Karolat B., Harynik J.J. Prediction of gas chromatographic retention times via an additive thermodynamic model // J. Chromatogr. A. 2010. V. 1217. P. 4862. https://doi.org/10.1016/chroma.2010.05.037
  37. Портнова С.В., Ямщикова Ю.Ф., Красных Е.Л. Характеристики удержива ния и энтальпии сорбции эфиров природных гидроксикарбоновых кислот на непод вижной фазе DB-1 // Журн. физ. химии. 2019. Т. 93. № 3. С. 464. https://doi.org/10.1134/S003602 4419020213
  38. Idroes R., Noviandy T.R., Maulana A., Syhendra R., Sasmita N.R., Muslem M. et al. Application of genetic algorithm – multiple linear reg ression and artificial neural network determination for prediction of Kovats retention index // Int. Rev. Model. Simulat. 2021. V. 14. № 2. P. 137. https://doi.org/10.15866/iremos.v14i2.20460
  39. Qu C., Schneider B.I., Kearsley A.J., Keyrouz W., Allison T.C. Predicting Kovats re tention indices using graph neural networks // J. Chromatogr. A. 2021. V. 1646. Article 462100. https://doi.org/10.1016/jchroma.2021.462100
  40. Zhang X., Shi L., Ding L., Sun Z., Song L., Qu H., Sun T. Study on quantitative struc ture – retention relationships (QSRR) for oxygen-containing organic compounds ba sed on gene expression programming (GEP) // J. Chromatogr. Sep. Tech. 2015. V. 6. № 7. P. 1. https://doi.org/10.4172/2157-7064.1000306

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences