Вольтамперометрический сенсор на основе карбоксилированных углеродных нанотрубок и поли(пирогаллолового красного) для определения эвгенола в эфирных маслах
- Авторы: Калмыкова А.Д.1, Зиятдинова Г.К.1
-
Учреждения:
- Казанский федеральный университет
- Выпуск: Том 79, № 6 (2024)
- Страницы: 603-616
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Статья получена: 31.01.2025
- URL: https://j-morphology.com/0044-4502/article/view/650208
- DOI: https://doi.org/10.31857/S0044450224060074
- EDN: https://elibrary.ru/ttzyhs
- ID: 650208
Цитировать
Аннотация
Разработан вольтамперометрический сенсор на основе стеклоуглеродного электрода с послойным сочетанием карбоксилированных многостенных углеродных нанотрубок и электрополимеризованного пирогаллолового красного для определения эвгенола в эфирных маслах. Найдены оптимальные условия получения пленки поли(пирогаллолового красного) в потенциодинамическом режиме в нейтральной среде, обеспечивающие наилучший вольтамперометрический отклик эвгенола. Электрод охарактеризован с помощью сканирующей электронной микроскопии и комплекса электрохимических методов. Показано значимое улучшение вольтамперных характеристик эвгенола на модифицированном полимером электроде. Рассчитаны параметры электроокисления эвгенола и показано, что реакция протекает с образованием о-хинона. В условиях дифференциально-импульсной вольтамперометрии на фоне буферного раствора Бриттона–Робинсона с рН 2.0 диапазон определяемых содержаний эвгенола составляет 0.75–100 мкМ с пределом обнаружения 0.73 мкМ. Показана высокая селективность определения эвгенола в присутствии неорганических ионов и типичных фенольных и терпеновых компонентов эфирных масел. Подход успешно апробирован на эвгенолсодержащих эфирных маслах и сопоставлен с независимым методом.
Об авторах
А. Д. Калмыкова
Казанский федеральный университет
Email: Ziyatdinovag@mail.ru
Химический институт им. А.М. Бутлерова
Россия, Кремлевская, 18, Казань, 420008Г. К. Зиятдинова
Казанский федеральный университет
Автор, ответственный за переписку.
Email: Ziyatdinovag@mail.ru
Химический институт им. А.М. Бутлерова
Россия, Кремлевская, 18, Казань, 420008Список литературы
- Khalil A.A., Rahman U., Khan M.R., Sahar A., Mehmood T., Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives // RSC Adv. 2017. V. 7. № 52. P. 32669. https://doi.org/10.1039/C7RA04803C
- Handbook of Herbs and Spices, 2nd Ed. / Ed. Peter K.V. Cambridge: Woodhead Publishing Ltd, 2012. V. 1. 336 p.
- Зиятдинова Г.К., Будников Г.К. Природные фенольные антиоксиданты в биоаналитической химии: состояние проблемы и перспективы развития // Успехи химии. 2015. Т. 84. № 2. C. 194. (Ziyatdinova G.K., Budnikov H.C. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development // Russ. Chem. Rev. 2015. V. 84. № 2. P. 194. https://doi.org/10.1070/RCR4436)
- WHO Food Additives Series: 56. Safety Evaluation of Certain Food Additives. Geneva: WHO Press, 2006. 440 p.
- Ozkan S.A., Kauffmann J., Zuman P. Electroanalysis in Biomedical and Pharmaceutical Sciences: Voltammetry, Amperometry, Biosensors, Applications. Berlin/Heidelberg, Germany: Springer, 2015. 363 p. https://doi.org/10.1007/978-3-662-47138-8.
- Ziyatdinova G., Ziganshina E., Budnikov H. Voltammetric sensing and quantification of eugenol using nonionic surfactant self-organized media // Anal. Methods. 2013. V. 5. № 18. P. 4750. https://doi.org/10.1039/C3AY40693H
- Yildiz G., Aydogmus Z., Cinar M.E., Senkal F., Ozturk T. Electrochemical oxidation mechanism of eugenol on graphene modified carbon paste electrode and its analytical application to pharmaceutical analysis // Talanta. 2017. V. 173. P. 1. https://doi.org/10.1016/j.talanta.2017.05.056
- Wang S., Zhang T., Wang Z., Wang D., Wang Z., Sun M., Liu H. Direct electrochemistry of eugenol at a glassy carbon electrode modified with electrochemically reduced graphene oxide // Int. J. Electrochem. Sci. 2019. V. 14. № 4. P. 3618. https://doi.org/10.20964/2019.04.27
- Maciel J.V., Silva T.A., Dias D., Fatibello-Filho O. Electroanalytical determination of eugenol in clove oil by voltammetry of immobilized microdroplets // J. Solid State Electrochem. 2018. V. 22. № 7. P. 2277. https://doi.org/10.1007/s10008-018-3933-z
- Verma A., Jain R. (1-Butyl-3-methylimidazolium hexafluorophosphate) based sensor for quantification of eugenol antioxidant // Electroanalysis. 2016. V. 28. № 10. P. 2598. https://doi.org/10.1002/elan.201600228
- Afzali D., Zarei S., Fathirad F., Mostafavi A. Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol // Mater. Sci. Eng. C. 2014. V. 43. P. 97. https://doi.org/10.1016/j.msec.2014.06.035
- Lin X., Ni Y., Kokot S. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples // Electrochim. Acta. 2014. V. 133. P. 484. https://doi.org/10.1016/j.electacta.2014.04.065
- Ziyatdinova G., Ziganshina E., Romashkina S., Budnikov H. Highly sensitive amperometric sensor for eugenol quantification based on CeO2 nanoparticles and surfactants // Electroanalysis. 2017. V. 29. № 4. P. 1197. https://doi.org/10.1002/elan.201600719
- Muthukutty B., Ganesamurthi J., Chen T.-W., Chen S.-M., Yu J., Liu X. A novel high-performance electrocatalytic determination platform for voltammetric sensing of eugenol in acidic media using pyrochlore structured lanthanum stannate nanoparticles // J. Ind. Eng. Chem. 2022. V. 106. P. 103. https://doi.org/10.1016/j.jiec.2021.10.015
- Anu Prathap M.U., Wei C., Sun S., Xu Z.J. A new insight into electrochemical detection of eugenol by hierarchical sheaf-like mesoporous NiCo2O4 // Nano Res. 2015. V. 8. № 8. P. 2636. https://doi.org/10.1007/s12274-015-0769-z
- Kang S.Z., Liu H., Li X., Sun M., Mu J. Electrochemical behavior of eugenol on TiO2 nanotubes improved with Cu2O clusters // RSC Adv. 2014. V. 4. № 2. P. 538. https://doi.org/10.1039/C3RA44895A
- Ganesamurthi J., Shanmugam R., Chen S.-M., Alagumalai K., Balamurugan M., Fan C.-H. A portable electrochemical sensor based on binary transition metal oxide (CoO/ZnO) for the evaluation of eugenol in real-time samples // Surf. Interfaces. 2023. V. 38. Article 102845. https://doi.org/10.1016/j.surfin.2023.102845
- Veerapandi G., Meenakshi S., Anitta S., Arul C., Ashokkumar P., Sekar C. Precise and quick detection of ascorbic acid and eugenol in fruits, pharmaceuticals and medicinal herbs using hydroxyapatite-titanium dioxide nanocomposite-based electrode // Food Chem. 2022. V. 382. Article 132251. https://doi.org/10.1016/j.foodchem.2022.132251
- Shi Z., Xia L., Li G., Hu Y. Platinum nanoparticles-embedded raspberry-liked SiO2 for the simultaneous electrochemical determination of eugenol and methyleugenol // Microchim. Acta. 2021. V. 188. № 7. P. 1. https://doi.org/10.1007/s00604-021-04892-0
- Fadillah G., Wicaksono W.P., Fatimah I., Saleh T.A. A sensitive electrochemical sensor based on functionalized graphene oxide/SnO2 for the determination of eugenol // Microchem. J. 2020. V. 159. Article 105353. https://doi.org/10.1016/j.microc.2020.105353
- Feng, Q., Duan K., Ye X., Lu D., Du Y., Wang C. A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) functionalized graphene-MoS2 nano-flower fabricated electrochemical sensor // Sens. Actuators B. 2014. V. 192. P. 1. https://doi.org/10.1016/j.snb.2013.10.087
- Murtada K., Moreno V., Ríos Á., Zougagh M. Decoration of graphene oxide with copper selenide in supercritical carbon dioxide medium as a novel approach for electrochemical sensing of eugenol in various samples // J. Supercrit. Fluids. 2019. V. 153. Article 104597. https://doi.org/10.1016/j.supflu.2019.104597
- Luque M., Ríos A., Valcárcel M. Use of supported liquid membranes incorporated in a flow system for the direct determination of eugenol in spice samples // Analyst. 2000. V. 125. № 10. P. 1805. https://doi.org/10.1039/B001974G
- Wang Z., Yao Y., Zhang H., Zhang J., Ding W., Liu Z., et al. Highly water-stable PEDOT:PSS composite electrode decorated with polyvinylpyrrolidone and carbon nanotubes for sensitive detection of eugenol // Int. J. Electrochem. Sci. 2015. V. 10. № 9. P. 6997. https://doi.org/10.1016/S1452-3981(23)17325-1
- Naskar H., Ghatak B., Biswas S., Singh P.P., Tudu B., Bandyopadhyay R. Electrochemical detection of eugenol (EU) using polyacrylonitrile molecular imprinted polymer embedded graphite (PAN-MIP/G) electrode // IEEE Sens. J. 2019. V. 20. № 1. P. 39. https://doi.org/10.1109/JSEN.2019.2941637
- Yang L., Zhao F., Zeng B. Electrochemical determination of eugenol using a three-dimensional molecularly imprinted poly (p-aminothiophenol-co-p-aminobenzoic acids) film modified electrode // Electrochim. Acta. 2016. V. 210. P. 293. https://doi.org/10.1016/j.electacta.2016.05.167
- Ziyatdinova G., Guss E., Morozova E., Budnikov H., Davletshin R., Vorobev V., Osin Yu. Simultaneous voltammetric determination of gallic and ellagic acids in cognac and brandy using electrode modified with functionalized SWNT and poly(pyrocatechol violet) // Food Anal. Methods. 2019. V. 12. № 10. P. 2250. https://doi.org/10.1007/s12161-019-01585-6
- Гусс Е.В., Зиятдинова Г.К., Жупанова А.С., Будников Г.К. Вольтамперометрическое определение кверцетина и рутина при совместном присутствии на электроде, модифицированном политимолфталеином // Журн. аналит. химии. 2020. Т. 75. № 4. С. 348. https://doi.org/10.31857/S0044450220040064 (Guss E.V., Ziyatdinova G.K., Zhupanova A.S., Budnikov H.C. Voltammetric determination of quercetin and rutin in their simultaneous presence on an electrode modified with polythymolphthalein // J. Anal. Chem. 2020. V. 75. № 4. P. 526. https://doi.org/10.1134/S106193482004005X)
- Chernousova N., Ziyatdinova G. Electrode based on the MWCNTs and electropolymerized thymolphthalein for the voltammetric determination of total isopropylmethylphenols in spices // Micromachines. 2023. V. 14. № 3. Article 636. https://doi.org/10.3390/mi14030636
- Zhupanova A., Guss E., Ziyatdinova G., Budnikov H. Simultaneous voltammetric determination of flavanones using an electrode based on functionalized single-walled carbon nanotubes and polyaluminon // Anal. Lett. 2020. V. 53. № 13. P. 2170. https://doi.org/10.1080/00032719.2020.1732402
- Ziyatdinova G., Zhupanova A., Davletshin R. Simultaneous determination of ferulic acid and vanillin in vanilla extracts using voltammetric sensor based on electropolymerized bromocresol purple // Sensors. 2022. V. 22. № 1. Article 288. https://doi.org/10.3390/s22010288
- Chandrashekar B.N., Swamy B.E.K., Mahesh K.R.V., Chandra U., Sherigara B.S. Electrochemical studies of bromothymol blue at surfactant modified carbon paste electrode by using cyclic voltammetry // Int. J. Electrochem. Sci. 2009. V. 4. № 3. P. 471.
- Ziyatdinova G., Guss E., Yakupova E. Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application // Sensors. 2021. V. 21. № 24. Article 8385. https://doi.org/10.3390/s21248385
- Feng P.-S., Wang S.-M., Su W.-Y., Cheng S.-H. Electrochemical oxidation and sensitive determination of pyrogallol at preanodized screen-printed carbon electrodes // J. Chinese Chem. Soc. 2012. V. 59. № 2. P. 231. https://doi.org/10.1002/jccs.201100384
- Atala E., Velásquez G., Vergara C., Mardones C., Reyes J., Tapia R.A., et al. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study // J. Phys. Chem. B. 2013. V. 117. № 17. P. 4870. https://doi.org/10.1021/jp400423w
- Bard A.J., Faulkner L.R. Electrochemical Methods, Fundamentals and Applications. 2nd Ed. New York: John Wiley& Sons Inc., 2001. 850 p.
- Lasia A. Electrochemical Impedance Spectroscopy and Its Applications. New York: Springer, 2014. 367 p. https://doi.org/10.1007/978-1-4614-8933-7
- Randviir E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using electrochemical impedance spectroscopy and cyclic voltammetry // Electrochim. Acta. 2018. V. 286. P. 179. https://doi.org/10.1016/j.electacta.2018.08.021
- Lopez J.C., Zon M.A., Fernández H., Granero A.M. Development of an enzymatic biosensor to determine eugenol in dental samples // Talanta. 2020. V. 210. Article 120647. https://doi.org/10.1016/j.talanta.2019.120647
- Backheet E.Y. Micro determination of eugenol, thymol and vanillin in volatile oils and plants // Phytochem. Anal. 1998. V. 9. № 3. P. 134. https://doi.org/10.1002/(SICI)1099-1565 (199805/06)9:3<134::AID-PCA398>3.0.CO;2-9
- Chemistry of Spices / Eds. Parthasarathy V.A., Chempakam B., Zachariah T.J. Oxfordshire: CABI, 2008. 445 p.
Дополнительные файлы
