Определение наночастиц полистирола в водных растворах методом двулучевой термолинзовой спектрометрии
- Авторы: Хабибуллин В.Р.1, Шевченко Н.Н.2, Проскурнин М.А.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Институт высокомолекулярных соединений Российской академии наук
- Выпуск: Том 79, № 12 (2024)
- Страницы: 1335-1347
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Статья получена: 30.05.2025
- URL: https://j-morphology.com/0044-4502/article/view/681378
- DOI: https://doi.org/10.31857/S0044450224120069
- EDN: https://elibrary.ru/stpnyr
- ID: 681378
Цитировать
Аннотация
Полимерные микро- и наночастицы (микропластик) являются загрязнителем окружающей среды. Низкое содержание микропластика в таких объектах может влиять на экосистемы и здоровье человека, поэтому растет необходимость определения частиц микропластика на уровне низких содержаний и одновременной оценки физико-химических параметров исследуемых систем. Термолинзовая спектрометрия (ТЛС) использована для определения частиц полистирола с размерами 65 и 80 нм в диапазоне концентраций 0.0005–0.15 мг/л в их водных дисперсиях. Комплексная регистрация данных ТЛС позволила оценить также и температуропроводность этих растворов. Установлено, что рост содержания наночастиц полистирола в воде приводит к нелинейному изменению температуропроводности.
Полный текст

Об авторах
В. Р. Хабибуллин
Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: Vladhab1995@gmail.com
Россия, Ленинские горы, 1, стр. 3, Москва, 119234
Н. Н. Шевченко
Институт высокомолекулярных соединений Российской академии наук
Email: Vladhab1995@gmail.com
Россия, Большой просп. В.О., 31, Санкт-Петербург, 199004
М. А. Проскурнин
Московский государственный университет имени М.В. Ломоносова
Email: Vladhab1995@gmail.com
Россия, Ленинские горы, 1, стр. 3, Москва, 119234
Список литературы
- Catarino A.I., Kramm J., Völker C., Henry T.B., Everaert G. Risk posed by microplastics: Scientific evidence and public perception // Curr. Opin. Green Sustain. Chem. 2021. V. 29. Article 100467.
- Gasperi J., Wright S.L., Dris R., Collard F., Mandin C., Guerrouache M., et al. Microplastics in air: Are we breathing it in? // Curr. Opin. Environ. Sci. Health. 2018. V. 1. P. 1.
- Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects // Sci. Total Environ. 2020. V. 702. Article 134455.
- Shim W.J., Hong S.H., Eo S.E. Identification methods in microplastic analysis: A review // Anal. Methods. 2017. V. 9. № 9. P. 1384.
- Mö ller J.N., Löder M.G.J., Laforsch C. Finding microplastics in soils: A review of analytical methods // Environ. Sci. Technol. 2020. V. 54. № 4. P. 2078.
- Primpke S., Christiansen S.H., Cowger W., De Frond H., Deshpande A., Fischer M.,et al. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics // Appl. Spectrosc. 2020. V. 74. № 9. P. 1012.
- Photothermal Spectroscopy Methods. 2nd Ed. / Eds. Bialkowski S., Astrath N., Proskurnin M. Hoboken. NJ, United States: John Wiley & Sons, Inc, 2019.
- Franko M., Tran C.D. Thermal lens spectroscopy / Encyclopedia of Analytical Chemistry, 2010.
- Proskurnin M.A., Khabibullin V.R., Usoltseva L.O., Vyrko E.A., Mikheev I.V., Volkov D.S. Photothermal and optoacoustic spectroscopy: State of the art and prospects // PHYS -USP+. 2022. V. 65. № 3. P. 270.
- Usoltseva L.O., Volkov D.S., Avramenko N.V., Korobov M.V., Proskurnin M.A. Nanodiamond aqueous dispersions as potential nanofluids: The determination of properties by thermal lensing and other techniques // Nanosyst: Phys. Chem. Math. 2018. V. 9. № 1. Р.17.
- Swapna M.S., Raj V., Sankararaman S. Allotropic transformation instigated thermal diffusivity of soot nanofluid: Thermal lens study // Phys. Fluids. 2019. V. 31. № 11. Article 7106.
- Khabibullin V.R., Usoltseva L.O., Mikheev I.V., Proskurnin M.A. Thermal diffusivity of aqueous dispersions of silicon oxide nanoparticles by dual-beam thermal lens spectrometry // Nanomater. 2023. V.13. № 6. Article 1006.
- Lenart V.M., Astrath N.G.C., Turchiello R.F., Goya G.F., Gómez S.L. Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique // J. Appl. Phys. 2018. V. 123. № 8. Article 5107.
- Proskurnin M.A., Volkov D.S., Ryndina E.S., Nedosekin D.A., Zharov V.P. Signal enhancement in disperse solutions for the analysis of biomedical samples by photothermal spectroscopy // ALT Proceedings. 2012. V. 1. P. 82.
- Jiménez-Pérez J.L., Guti é rrez Fuentes R., Sá nchez-Sosa R., Zapata Torres M.G., Correa-Pacheco Z.N., Sá nchez Ramírez J.F. Thermal diffusivity study of nanoparticles and nanorods of titanium dioxide (TiO 2) and titanium dioxide coated with cadmium sulfide (TiO 2 CdS) // Mat. Sci. Semicond. Proces. 2015. V. 37. P. 62.
- Проскурнин М. А., Волков Д. С., Горькова Т. А., Бендрышева С. Н., Смирнова А. П., Недосекин Д. А. Успехи термолинзовой спектрометрии // Журн. аналит. химии. 2017. Т. 70. № 3. С. 227. (Proskurnin M.A., Volkov D.S., Gor’kova T.A., Bendrysheva S.N., Smirnova A.P., Nedosekin D.A. Advances in thermal lens spectrometry // J. Anal. Chem. 2015. V. 70. № 3. P. 249.)
- Proskurnin M.A., Usoltseva L.O., Volkov D.S., Nedosekin D.A., Korobov M.V., Zharov V.P. Photothermal and heat-transfer properties of aqueous detonation nanodiamonds by Photothermal microscopy and transient spectroscopy // J. Phys. Chem. C. 2021. V. 125. № 14. Article 7808.
- Khabibullin V.R., Ratova D.-M.V., Stolbov D.N., Mikheev I.V., Proskurnin M.A. The thermophysical and physicochemical properties of the aqueous dispersion of graphene oxide dual-beam thermal lens spectrometry // Nanomaterials. 2023. V.13. №.14. Article 2126.
- Deus W.B., Ventura M., Silva J.R., Andrade L.H.C., Catunda T., Lima S.M. Monitoring of the ester production by near-near infrared thermal lens spectroscopy // Fuel. 2019. V. 253. P. 1090.
- Ventura M., Deus W.B., Silva J.R., Andrade L.H.C., Catunda T., Lima S.M. Determination of the biodiesel content in diesel / biodiesel blends by using the near-near-infrared thermal lens spectroscopy // Fuel. 2018. V. 212. P. 309.
- Proskurnin M.A., Chernysh V.V., Pakhomova S.V., Kononets M.Y., Sheshenev A.A. Investigation of the reaction of copper (I) with 2,9- dimethyl -1,10- phenanthroline at trace level by thermal lensing // Talanta. 2002. V. 57. № 5. P. 831.
- Astrath N.G.C., Astrath F.B.G., Shen J., Zhou J., Michaelian K.H., Fairbridge C., et al. Thermal-lens study of photochemical reaction kinetics // Opt. Lett. 2009. V. 34. № 22. P. 3460.
- Franko M. Thermal lens spectrometric detection in flow injection analysis and separation techniques // Appl. Spectrosc. Rev. 2008. V. 43. P. 358.
- Šikovec M., Novi č M., Franko M. Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography // J. Chromatogr. A. 1996. V. 739. № 1. P. 111.
- Dzyabchenko A.A., Proskurnin M.A., Abroskin A.G., Chashchikhin D.V. Conjunction of thermal lens spectrometry and high-performance liquid chromatography: Approach to data treatment // J. Chromatogr. A. 1998. V. 827. № 1. P. 13.
- Tran C.D., Huang G., Grishko V.I. Direct and indirect detection of liquid chromatography by infrared thermal lens spectrometry // Anal. Chim. Acta. 1995. V. 299. № 3. P. 361.
- Martelanc M., Ziberna L., Passamonti S., Franko M. Application of high-performance liquid chromatography combined with ultra-sensitive thermal lens spectrometric detection for simultaneous biliverdin and bilirubin assessment at trace levels in human serum // Talanta. 2016. V. 154. P. 92.
- Cassano C.L., Mawatari K., Kitamori T., Fan Z.H. Thermal lens microscopy as a detector in microdevices // Electrophoresis. 2014. V. 35. № 16. P. 2279.
- Seta N., Mawatari K., Kitamori T. Individual nanoparticle detection in liquids by thermal lens microscopy and improvement of detection efficiency using a 1-μm microfluidic channel // Anal. Sci. 2009. V. 25. № 2. P. 275.
- Mawatari K., Kitamori T., Sawada T. Individual detection of single-nanometer-sized particles in liquid by Photothermal microscope // Anal. Chem. 1998. V. 70. № 23. P. 5037.
- Shimizu H., Mawatari K., Kitamori T. Development of a differential interference contrast thermal lens microscope for sensitive individual nanoparticle detection in liquid // Anal. Chem. 2009. V. 81. № 23. P. 9802.
- Yamaoka S., Kataoka Y., Kazama Y., Fujii Y., Hibara A. Efficient thermal lens nanoparticle detection in a flow-focusing microfluidic device // Sens. Actuators B. 2016. V. 228. P. 581.
- Khabibullin V.R., Franko M., Proskurnin M.A. Accuracy of measurements of thermophysical parameters by dual-beam thermal-lens spectrometry // Nanomaterials. 2023. V. 13. № 3. Article 3390.
- Luna-Sánchez J.L., Jiménez-Pérez J.L., Carbajal-Valdez R., Lopez -Gamboa G., Pérez-González M., Correa-Pacheco Z.N. Green synthesis of silver nanoparticles using Jalapeño Chili extract and thermal lens study of acrylic resin nanocomposites // Thermochim. Acta. 2019. V. 678. Article 178314.
- Shevchenko N., Tomšík E., Laishevkina S., Iakobson O., Pankova G. Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties // Soft. Matter. 2021. V. 17. № 8. P. 2290.
- Shakirova J.R., Shevchenko N.N., Baigildin V.A., Chelushkin P.S., Khlebnikov A.F., Tomashenko O.A., et al. Eu- based phosphorescence lifetime polymer nanothermometer: A nanoemulsion polymerization approach to eliminate quenching of eu emission in aqueous media // ACS Appl. Polym. Mater. 2020. V. 2. № 2. P. 537.
- Khabibullin V.R., Usoltseva L.O., Galkina P.A., Galimova V.R., Volkov D.S., Mikheev I.V., Proskurnin M.A. Measurement precision and thermal and absorption properties of nanostructures in aqueous solutions by transient and steady-state thermal-lens spectrometry // Physchem. 2023. V. 3. № 1. P. 156.
- Mikheev I.V., Usoltseva L.O., Ivshukov D.A., Volkov D.S., Korobov M.V., Proskurnin M.A. Approach to the assessment of size-dependent thermal properties of disperse solutions: Time-resolved photothermal lensing of aqueous pristine fullerenes C60 and C70 // J. Phys. Chem C. 2016. V. 120. № 49. P. 28270.
- Belioka M.-P., Achilias D.S. Microplastic pollution and monitoring in seawater and harbor environments: A meta-analysis and review // Sustainability. 2023. V.15. № 11. Article 9079.
- López-Muñoz G.A., Pescador-Rojas J.A., Ortega-Lopez J., Salazar J.S., Balderas-López J.A. Thermal diffusivity measurement of spherical gold nanofluids of different sizes / concentrations // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 423.
- Nideep T.K., Ramya M., Nampoori V.P.N., Kailasnath M. The size dependent thermal diffusivity of water soluble CdTe quantum dots using dual beam thermal lens spectroscopy // Phys. E: Low- Dimens. 2020. P. 116. Article 113724.
- Lopes C.S., Lenart V.M., Turchiello R.F., Gómez S.L. determination of the thermal diffusivity of plasmonic nanofluids containing PVP- coated Ag nanoparticles using mode-mismatched dual-beam thermal lens technique // Adv. Condens. Matter. Phys. 2018. V. 2018. P. 1.
- Mathew R.M., Zachariah E.S., Jose J., Thomas T., John J., Titus T., et al. Synthesis, characterization and evaluation of tunable thermal diffusivity of phosphorus-doped carbon nanodot // Appl. Phys. A. 2020. V. 126. № 11. P. 828.
- Yang Y. Thermal lens spectrometry based on single-laser / dual-beam configuration // Anal. Chem. 1984. V. 56. № 13. P. 2336.
- Jiménez-Pérez J.L., López- Gamboa G., Sá nchez -Ramírez J.F., Correa-Pacheco Z.N., Netzahual-Lopantzi A., Cruz-Orea A. Thermal diffusivity dependence with highly concentrated graphene oxide / water nanofluids by mode-mismatched dual-beam thermal lens technique // Int. J. Thermophys. 2021. V. 42. № 7. P. 107.
- Thomas L., John J., Kumar B.R., George N.A., Kurian A. Thermal diffusivity of gold nanoparticle reduced by polyvinyl alcohol using dual beam thermal lens technique // Mater. Today Proc. 2015. V. 2. № 3. P. 1017.
- Dobek K. Thermal lensing: Outside of the lasing medium // Appl. Phys B. 2022. V. 128. № 2. P. 18.
- Rivière D., Selva B., Chraibi H., Delabre U., Delville J.-P. Convection flows driven by laser heating of a liquid layer // Phys. Rev E. 2016. V. 93. № 2. Article 3112.
- Ramya M., Nideep T.K., Nampoori V.P.N., Kailasnath M. Particle size and concentration effect on thermal diffusivity of water-based ZnO nanofluid using the dual-beam thermal lens technique // Appl. Phys. B. 2019. V. 125. № 9. P. 181.
- Khabibullin V.R., Chetyrkina M.R., Obydennyy S.I., Maksimov S.V., Stepanov G.V., Shtykov S.N. Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: Implications for controlled drug-delivery application // Int. J. Mol. Sci. 2023. V. 24. № 5. Article 2480.
- Kumar Goyal R., Eswaramoorthy M. Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications // Sustain. Energy Techn. 2023. V. 56. Article 103078.
- Angayarkanni S.A., Philip J. Review on thermal properties of nanofluids: Recent developments // Adv. Colloid Interface Sci. 2015. V. 225. P. 146.
- Gonçalves I., Souza R., Coutinho G., Miranda J., Moita A., Pereira J.E., Moreira A., Lima R. Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges // Appl. Sci. 2021. V. 11. № 6. Article 2525.
- Zamiri R., Azmi B.Z., Shahril Husin M., Zamiri G., Ahangar H.A., Rizwan Z. Thermal diffusivity measurement of copper nanofluid using pulsed laser thermal lens technique // J. Eur. Opt. Soc – Rapid Publ. 2012. V. 7. Article 12022.
- Rajesh Kumar B., Shemeena Basheer N., Jacob S., Kurian A., George S.D. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture // J. Therm. Anal. Calor. 2015. V. 119. № 1. P. 453.
- Herrera-Aquino R., Jiménez-Pérez J.L., Altamirano -Juárez D.C., López- Gamboa G., Correa-Pacheco Z.N., Carbajal-Vald éz R. Green synthesis of silver nanoparticles contained in centrifuged citrus oil and their thermal diffusivity study by using thermal lens technique // Int. J. Thermophys. 2018. V. 40. № 1. P. 3.
- Netzahual-Lopantzi Á., Sá nchez -Ramírez J.F., Jiménez-Pérez J.L., Cornejo-Monroy D., López- Gamboa G., Correa-Pacheco Z.N. Study of the thermal diffusivity of nanofluids containing SiO 2 decorated with Au nanoparticles by thermal lens spectroscopy // Appl. Phys. A. 2019. V. 125. № 9. P. 588.
- de Freitas Cabral A.J., Furtado C.A., Fantini C., Alcantara Jr P. Thermal diffusivity of multi-walled carbon nanotubes dispersed in oleic acid // J. Nano. Res. 2012. V. 21. P. 125.
- Vijesh K.R., Sony U., Ramya M., Mathew S., Nampoori V.P.N., Thomas S. Concentration dependent variation of thermal diffusivity in highly fluorescent carbon dots using dual beam thermal lens technique // Int. J. Therm. Sci. 2018. V. 126. P. 137.
- Mathew S., Francis F., Joseph S. A., Enhanced thermal diffusivity of water based ZnO nanoflower /rGO nanofluid using the dual-beam thermal lens technique // Nano-Struct. Nano-Objects. 2021. V. 28. Article 100784.
- Francis F., Anila E.I., Joseph S.A. Dependence of thermal diffusivity on nanoparticle shape deduced through thermal lens technique taking ZnO nanoparticles and nanorods as inclusions in homogeneous dye solution // Optik. 2020. V. 219. Article 165210.
Дополнительные файлы
