Adsorption and reaction of molecules of nitrogen oxide (NO) on the surface of nickel nano-sized clusters on aluminium oxide α-Al2O3(0001)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Adsorption and reaction of nitrogen oxide (NO) molecules on the surface of a model metal-oxide system formed by controlled deposition of nickel clusters under ultrahigh vacuum conditions on the surface of α-Al2O3(0001) aluminum oxide thin film grown on the Mo(110) substrate is studied in-situ by experimental surface analysis methods. According to X-ray photoelectron and electron Auger spectroscopy, infrared Fourier spectroscopy, and temperature-programmed desorption data, there is a conditional Ni cluster size of 2 nm that separates the nature of the electronic state of NO molecules adsorbed on their surface and their reactivity. It is found that the peculiarity of Ni clusters with a characteristic size not exceeding 2 nm is that NO molecules are adsorbed on their surface in the form of dimers (NO)2 while for clusters of larger size adsorption occurs in the form of monomers (NO). It is concluded that this difference is the reason for the different reaction behavior of the molecules. The key difference between clusters smaller and larger than 2 nm in size is that in the former case N2O molecules are formed upon heating the system and desorbed into the gas phase while this does not occur in the latter case. The formation of N2O is due to the mutual influence of NO molecules forming the (NO)2 dimer under the action of the metal/oxide interface. The results indicate that it is possible to tune the catalytic efficiency of the metal-oxide system by varying the size of the applied metal cluster.

Full Text

Restricted Access

About the authors

T. T. Magkoev

North Ossetian State University named after K. L. Khetagurov

Author for correspondence.
Email: t_magkoev@mail.ru
Russian Federation, Vladikavkaz, 362025

N. E. Pukhaeva

North Ossetian State University named after K. L. Khetagurov

Email: t_magkoev@mail.ru
Russian Federation, Vladikavkaz, 362025

Y. Men

Shanghai University of Engineering Science

Email: t_magkoev@mail.ru

School of Chemistry and Chemical Engineering

China, Shanghai, 201620 PR

R. Behjatmanesh-Ardakani

Ardakan University

Email: t_magkoev@mail.ru

Department of Chemical Engineering, Faculty of Engineering

Iran, Islamic Republic of, Ardakan, P. O. Box 184, IR

M. Elahifard

Ardakan University

Email: t_magkoev@mail.ru

Department of Chemical Engineering, Faculty of Engineering

Iran, Islamic Republic of, Ardakan, P. O. Box 184, IR

О. G. Ashkhotov

Kh. M. Berbekov Kabardino-Balkarian State University

Email: t_magkoev@mail.ru
Russian Federation, Nalchik, 360004

References

  1. Shiotari A., Koshida H., Okuyama H. // Surf. Sci. Rep. 2021. V. 76. P. 100500. https://doi.org/10.1016/j.surfrep.2020.100500
  2. Kim D.H., Ringe S., Kim H. et al. // Nature Commun. 2021. V. 12. P. 1856. https://doi.org/10.1038/s41467-021-22147-7
  3. Rosca V., Duca M., de Groot M.T., Koper M.T.M. // Chem. Rev. 2009. V. 109, P. 2209. https://doi.org/10.1021/cr8003696
  4. Hu Y., Griffiths K., Norton P.R. // Surf. Sci. 2009. V. 603. P. 1740. doi: 10.1016/j.susc.2008.09.051
  5. Smirnov M.Y., Gorodetskii V.V., Block, J.H. // J. Mol. Catal. A: Chem. 1996, V. 107. P. 359. https://doi.org/10.1016/1381-1169(95)00175-1
  6. de Vooys A.C.A., Koper M.T.M., van Santen R.A., van Veen J.A.R. // J. Catal. V. 2001. V. 202. P. 387. https://doi.org/10.1006/jcat.2001.3275
  7. Hess C., Ozensoy E., Yi C.-W., Goodman D.W. // J. Am. Chem. Soc. V. 2006. V. 128. P. 2988. doi: 10.1021/ja057131q
  8. Paul D.K., Smith B.W., Marten C.D., Burchett J. // J. Mol. Catal. A: Chemical. 2001. V. 167. P. 67. https://doi.org/10.1016/S1381-1169(00)00492-1
  9. Fuente S.A., Fortunato L.F., Domancich N. et al. // Surf. Sci. 2012. V. 606. P. 1948. http://dx.doi.org/10.1016/j.susc.2012.08.003
  10. Brown W.A., King D.A. // J. Phys. Chem. B. 2000. V. 104. P. 2578. doi: 10.1021/jp9930907.
  11. Conrad H., Ertl G., Kuppers J., Latta E.E. // Surf. Sci. 1975. V. 50. P. 296. https://doi.org/10.1016/0039-6028(75)90026-6
  12. Henry C.H. // Surf. Sci. Rep. 1998. V. 31. P. 235. https://doi.org/10.1016/S0167-5729(98)00002-8
  13. Hirschmugl C.J. // Surf. Sci. 2002. V. 500. P. 577. https://doi.org/10.1016/S0039-6028(01)01523-0
  14. Chen P.J., Goodmann D.W. // Surf. Sci. 1994. V. 312. P. L767. https://doi.org/10.1016/0039-6028(94)90719-6
  15. Magkoev T.T., Christmann K., Moutinho A.M.C., Murata Y. // Surf. Sci. 2002. V. 515. P. 538. https://doi.org/10.1016/S0039-6028(02)01972-6
  16. Venables J.A. Introduction to Surface and thin Films Processes. Cambridge: Univ. Press, 2010. 372 p. ISBN: 9780511755651. https://doi.org/10.1017/CBO9780511755651
  17. Baumer M., Freund H.-J. // Progr. Surf. Sci. 1999. V. 61. P. 127. https://doi.org/10.1016/S0079-6816(99)00012-X
  18. Grigorkina G.S., Zaalishvili V.B., Burdzieva O.G. et al. // Solid State Commun. 2018. V. 276. P. 28. https://doi.org/10.1016/j.ssc.2018.04.001
  19. Magkoev T.T. // Vacuum. 2021. V. 189. P. 110220. https://doi.org/10.1016/j.vacuum.2021.110220
  20. Chen J.G., Erley W., Ibach H. // Surf. Sci. 1989. V. 224. P. 215. https://doi.org/10.1016/0039-6028(89)90911-4
  21. Demir S., Fellah M.F. // Surf. Sci. 2020. V. 701. P. 121689. https://doi.org/10.1016/j.susc.2020.121689
  22. Beniya A., Isomura N., Hirata H., Watanabe Y. // Surf. Sci. 2013. V. 613. P. 28. https://doi.org/10.1016/j.susc.2013.03.001
  23. Blyholder G. // J. Phys. Chem. 1964. V. 68. P. 2772. https://doi.org/10.1021/j100792a006
  24. Aizawa H., Tsuneyuki S. // Surf. Sci. 1998. V. 399. P. L364. https://doi.org/10.1016/S0039-6028(98)00042-9
  25. Wimmer E., Fu C.L., Freeman A.J. // Phys. Rev. Lett. 1985. V. 55. P. 2618. https://doi.org/10.1103/PhysRevLett.55.2618
  26. Jennison D.R., Verdozzi C., Schultz P.A., Sears M.P. // Phys. Rev. B. 1999. V. 59. P. R15605. https://doi.org/10.1103/PhysRevB.59.R15605
  27. Mattsson A.E., Jennison D.R. // Surf. Sci. 2002. V. 520. P. L611. https://doi.org/10.1016/S0039-6028(02)02209-4
  28. Tonner B.P., Kao C.M., Plummer E.W. et al. // Phys. Rev. Lett. 1983. V. 51. P. 1378. https://doi.org/10.1103/PhysRevLett.51.1378
  29. Ibach H., Lehwald S. // Surf. Sci. 1978. V. 76. P. l. https://doi.org/10.1016/0039-6028(78)90065-1
  30. Bertolo M., Jacobi K. // Surf. Sci. 1990. V. 226. P. 207. https://doi.org/10.1016/0039-6028(90)90486-R
  31. Hess C., Ozensoy E., Yi C.-W., Goodman D.W. // J. Am. Chem. Soc. 2006. V. 128. P. 2988. doi: 10.1021/ja057131q
  32. Duarte H.A., Salahub D.R. // J. Phys. Chem. B. 1997. V. 101. P. 7464. doi: 10.1021/Jp9706801
  33. Pacchioni G., Rosch N. // Surf. Sci. 1994. V. 306. P. 169. https://doi.org/10.1016/0039-6028(94)91195-9
  34. Debeila M.A., Coville N.J., Scurrell M.S., Hearne G.R. // Catal. Today. 2002. V. 72. P. 79. https://doi.org/10.1016/S0920-5861(01)00480-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Ni LVV Auger line (a) for the system formed by depositing 0.4 ML Ni on the Mo(110) surface (1) and on the surface of a 5 nm thick α-Al2O3(0001) film formed on Mo(110) (2); b) comparison of the spectra shown in (a) in a limited spectral region for a clear demonstration of the energy shift.

Download (135KB)
3. Fig. 2. Infrared Fourier spectra in the region of intramolecular vibrations of NO molecules adsorbed on the surface of the Ni/Al2O3 metal oxide system with different Ni coatings, ML: 1—0.02, 2—0.04, 3—0.06, 4—0.08, 5—0.1, 6—0.2, 7—0.4. The substrate temperature is 80 K, NO exposure is 10 L.

Download (71KB)
4. Fig. 3. Photoelectron line N1s during adsorption of saturating coating NO (exposure 10 L) on the surface of the Ni/Al2O3 system with Ni coating of 0.04 ML (spectrum 1) and 0.4 ML (spectrum 2). Substrate temperature – 80 K.

Download (56KB)
5. Fig. 4. Temperature-programmed desorption spectra of the 15NO/Ni/Al2O3 system with a Ni coating of 0.04 ML (ultra-small Ni clusters). Spectra 1–4 correspond to N2O, NO, N2, and O2, respectively.

Download (65KB)

Copyright (c) 2025 Russian Academy of Sciences