Bulk properties of the water-urea-choline chloride system
- Autores: Kalinyuk D.A.1, Selezeneva E.A.2, Yumakov D.I.2, Kosova G.N.2,3
-
Afiliações:
- M. V. Lomonosov Moscow State University
- Mari State University
- Volga State University of Technology
- Edição: Volume 99, Nº 4 (2025)
- Páginas: 584-594
- Seção: ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ
- ##submission.dateSubmitted##: 14.06.2025
- ##submission.dateAccepted##: 14.06.2025
- ##submission.datePublished##: 15.06.2025
- URL: https://j-morphology.com/0044-4537/article/view/684394
- DOI: https://doi.org/10.31857/S0044453725040076
- EDN: https://elibrary.ru/FPALOY
- ID: 684394
Citar
Resumo
The available experimental data on the solution densities of two binary subsystems, viz. water — choline chloride and urea — choline chloride, and the ternary water — urea — choline chloride system are analyzed. The parameters of the Pitzer-Simonson-Clegg bulk model describing the experimental values of molar volumes of solutions of both binary subsystems and ternary system one function Vm = f(T, p, x1, x2) in the temperature range from 278.15 to 363.15 K and the pressure range from 0.1 to 50 MPa are determined. In the course of thermodynamic modeling, the dependence of the molar volume of choline chloride melt on the state parameters (p, T) is proposed. The obtained model parameters describing binary interactions in the water — choline chloride and urea — choline chloride subsystems can be used to model bulk properties of solvents with deep eutectic of different component composition.
Palavras-chave
Texto integral

Sobre autores
D. Kalinyuk
M. V. Lomonosov Moscow State University
Autor responsável pela correspondência
Email: kalinyukda@my.msu.ru
ORCID ID: 0000-0002-7758-9445
Department of Chemistry
Rússia, Moscow, 119991E. Selezeneva
Mari State University
Email: kalinyukda@my.msu.ru
Rússia, Yoshkar-Ola, 424001
D. Yumakov
Mari State University
Email: kalinyukda@my.msu.ru
Rússia, Yoshkar-Ola, 424001
G. Kosova
Mari State University; Volga State University of Technology
Email: kalinyukda@my.msu.ru
Rússia, Yoshkar-Ola, 424001; Yoshkar-Ola, 424000
Bibliografia
- Smith E.L., Abbott A.P., Ryder K.S. // Chem. Rev. 2014. V. 114. № 21. Р. 11060.
- Shahbaz K., Mjalli F.S., Gholamreza V.-N. et al. // J. Mol. Liq. 2016. V. 222. Р. 61.
- Chen W. Xue Zh., Wang J. et al. // Acta Phys. Chim. Sin. 2018. V. 34 № 8. Р. 904.
- Delgado-Mellado N., Larriba M., Navarro P. et al. // J. Mol. Liq. 2018. V. 260. Р. 37.
- Hansen B.B., Spittle St., Chen B. et al. // Chem. Rev. 2020. V. 121. № 3. Р. 1232.
- Wen Q., Chen J.-X., Tang Yu-L. et al. // Chemosphere. 2015. V. 132. Р. 63.
- El Achkar T., Greige-Gerges H., Fourmentin S. // Environ. Chem. Lett. 2021. V. 19. Р. 3397.
- Abbott A.P., Capper G., Davies D.L. et al. // J. Chem. Eng. Data. 2006. V. 51 № 4. Р. 1280.
- Abbott A.P., Capper G., Davies D.L. et al. // Chem. Commun. 2003. V. 1. Р. 70.
- Isaifan R.J., Amhamed A. // Adv. Chem. 2018. V. 2018 № 1. Р. 2675659.
- Frauenkron M., Melder J.-P., Ruider G. et al. // J. Environ. Prot. Ecol. 2012. V. 413. Р. 406.
- Mangiacapre E., Castiglione F., Aristotile M.D. et al. // J. Mol. Liq. 2023. V. 383. Р. 22120.
- Shaukat S., Buchner R. // J. Chem. Eng. Data. 2011. V. 56. № 12. Р. 4944.
- Agieienko V., Buchner R. // Ibid. 2019. V. 64. № 11. Р. 4763.
- Gilmore M., Swadzba-Kwasny M., Holbrey J.D. // J. Chem. Eng. Data. 2019. V. 64. № 12. Р. 5248.
- Leron R.B., Li M.H. // J. Chem. Thermodyn. 2012. V. 54. Р. 293.
- Shah D., Mjalli F.S. // Phys. Chem. Chem. Phys. 2014. V. 16. № 43. Р. 23900.
- Shekaari H., Zafarani-Moattar M. T., Mohammadi B. // J. Mol. Liq. 2017. V. 243. Р. 451.
- Xie Y., Dong H., Zhang S. et al. // J. Chem. Eng. Data. 2014. V. 59. № 11. Р. 3344.
- Yadav A., Pandey S. // J. Chem. Eng. Data. 2014. V. 59. № 7. Р. 2221.
- Zhekenov T., Toksanbayev N., Kazakbayeva Z. et al. // Fluid Phase Equilib. 2017. V. 441. Р. 43.
- Su W.C., Wong D.S. H., Li M.H. // J. Chem. Eng. Data. 2009. V. 54. № 6. Р. 1951.
- Haghbakhsh R., Raeissi S. // J. Chem. Thermodyn. 2018. V. 124. Р. 10.
- Dhingra D., Bhawna B., Pandey S. // J. Chem. Thermodyn. 2019. V. 130. Р. 166.
- Chemat F., Anjum H., Shariff A.M. et al. // J. Mol. Liq. 2016. V. 218. Р. 301.
- Mjalli F.S., Jabbar N.M. A. // Fluid Phase Equilib. 2014. V. 381. Р. 71.
- Kosova D.A., Voskov A.L., Uspenskaya I.A. // J. Solution Chem. 2016. V. 45. Р. 1182.
- Wagner W., Pruß A. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 2. Р. 387.
- Voskov A.L., Kovalenko N.A. // Fluid Phase Equilib. 2020. V. 507. Р. 112419.
- Senko M.E., Templeton D.H. // Acta Crystallogr. 1960. V. 13. № 4. Р. 281.
- Tischer S., Börnhorst M., Amsler J. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 30. Р. 16785. 10.1039/C9CP01529A
- Dana A.G., Shter G.E., Grader G.S. // RSC Adv. 2014. V. 4. № 66.
Arquivos suplementares
